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Abstract—The Operation and Information Technology support
personnel at utility command and control centers constantly
detect suspicious events and/or extreme conditions across the
smart grid. Already overwhelmed by routine mandatory tasks
like guidelines compliance and patching that if ignored could
incur penalties, they have little time to understand the large
volumes of event logs generated by intrusion detection systems,
firewalls, and other security tools. The cognitive gap between
these powerful automated tools and the human mind reduces
the situation awareness, thereby increasing the likelihood of sub-
optimal decisions that could be advantageous to well-evolved
attackers. This paper proposes a tri-modular framework which
shifts low-performance processing speed and data contextual-
ization to intelligent learning algorithms that provide humans
only with actionable information, thereby bridging the cognitive
gap. The framework has three modules including Data Module
(DM): Kafka, Spark, and R to ingest streams of heterogeneous
data; Classification Module (CM): a Long Short-Term Memory
(LSTM) model to classify processed data; and Action Module
(AM): naturalistic and rational models for time-critical and non-
time-critical decision-making, respectively. This paper focuses on
the design and development of the modules, and demonstrates
proof-of-concept of DM using partially synthesized streams of
real smart grid network security data.

Index Terms—LSTM, situation awareness, cognitive gap,
decision-making, human-on-the-loop

I. INTRODUCTION

Recent successful cyber-attacks on the smart grid like the
two campaigns against Ukraine in 2015 and 2016, and the
Dragonfly campaign against western electric sector in 2014
and 2017 targeted the weakest links in a cybersecurity pipeline,
the utility employees [1]. While the security technologies have
advanced, now capable of detecting and reporting malicious
events, the human users like security analysts and engineers,
operators and dispatchers are not adequately equipped to
understand and act upon such rapidly generated event streams.
This, called the cognitive gap, has been exploited by well-
evolved attackers [2], [3]. Industry bodies like the North
American Electric Reliability Commission (NERC) and the
National Institute of Standards & Technology (NIST) have
established guidelines for protecting critical infrastructure like
the smart grid against internal and external cyber-attacks, but
they focus more on the attacks targeting security technologies
of the utility infrastructure, not the human factors [4], [5].

This creates a need for a solution at multiple levels to: a)

bridge the cognitive gap by contextualizing the available data
in a human-understandable format; b) enhance the visualiza-
tion interface by optimizing the information to be displayed on
a need-to-know basis; and c) imbibe the prior experience and
know-how of domain-specific cyber-physical security experts
into the framework and train it to provide active recommen-
dations to and accept feedback from individual operators and
analysts. To meet these objectives, the paper proposes a tri-
modular framework that complements the existing cyberse-
curity infrastructure at utility Command and Control Centers
(CCCs) to enhance the power of the visualization models and
leverage well-informed decision-making from its users.

The key contributions of the paper are: (1) developing a
framework to minimize the cognitive gap between humans and
security tools by ingesting event log streams from tools and vi-
sualizing actionable information to users; (2) leveraging open-
source applications to build the framework’s modules to ensure
platform agnosticism during deployment and integration; (3)
discussing the module architecture to ensure replication of
the technology across different utility infrastructure; and (4)
demonstrating a proof-of-concept for the DM using real smart
grid network security data.

The framework shown in Fig. 1 and conceptually introduced
in the authors’ previous work [6], has: 1) Data Module
(DM) comprising Kafka, Apache Spark, and R for ingesting
and aggregating incoming streams of time-series data and
establishing context through correlation, regression, hypoth-
esis testing and other data mining methods; 2) Classifica-

Fig. 1. The Proposed Tri-Modular Framework
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tion Module (CM) comprising a Long Short-Term Memory
(LSTM) neural network for classifying the processed data
from DM; and 3) Action Module (AM) comprising natural-
istic decision-making for time-critical situations and rational
decision-making for non-time-critical situations, both of which
explore datasets classified by CM as ”malicious” in relation to
cognitive parameters specific to individual or groups of users
and enterprise parameters specific to the utility, and arrive at
possible decisions that the users can make [7]. This framework
is not designed to replace security tools or employees at
utilities, but to intelligently bridge the two.

The rest of this paper is organized as follow. Section II
briefly highlights the related work in the literature. Sections
III, IV and V briefly overview the architectures and model
formulations of DM, CM and AM, respectively, and how they
fit within the scope of smart grid cybersecurity. Section VI
implements DM for real smart grid network security data to
show a proof-of-concept. Finally, Section VII delineates the
future work before offering concluding remarks.

II. RELATED WORK

The smart grid is a cyber-physical system where an attack
on one realm (cyber or physical) has impacts on the other [8].
Standards like NISTIR 7628 Revision 1 and NERC guidelines
for Human Performance address aspects like disgruntled em-
ployees, human errors, awareness and training, access controls
and certifications) [9], [10]. These aspects can be grouped
under the term, human-in-the-loop. However, the standards
ignore human-on-the-loop aspects like the cognitive gap in-
duced by stress, lack of Situation Awareness (SA) and lower
attention span. Numerous cryptographic techniques, encrypted
communication, end-to-end authentication and protocol-level
security policies exist, all of which are resource-intensive and
need frequent patches and upgrades [11]. These tasks, along
with ensuring compliance to industry guidelines dictated by
the NERC Critical Infrastructure Protection (CIP) consume
most of the active time available for the human security
analysts and engineers at the utility CCCs to process and
analyze potentially malicious events being detected at different
parts of the grid, sometimes even simultaneously.

A holistic resilient framework for Distributed Energy Re-
source (DER) security was proposed [12]. This work empha-
sized on the lack of cybersecurity focus of existing standards
to secure field devices like DERs where the utility’s visibility
is limited. While the framework considers the human threat
in the form of different DER stakeholders like the owners
like utilities, installers, consumers and the Power Purchase
Agreements (PPAs), it does not characterize the nature of
threats from humans at the utility CCC.

A comprehensive visualization tool was developed to ren-
der cyber trust of smart grid Supervisory Control and Data
Acquisition (SCADA) network assets [13]. The Java-based
application uses geospatial and statistical visualization models
to compute and render trust metrics in the event of insider and
nation sponsored attack scenarios. However, the model’s scope
does not extend beyond cyber trust to other cybersecurity

applications like anomaly detection, event root-cause analysis,
event classification and prediction [14]. Another work dis-
cusses the need for revamping the smart grid architecture and
integrating it with data mining and visualization modules [15].
However, this work also focuses primarily on endpoint and
protocol-level security issues, but not on the human aspects.

Defense-in-depth and breadth are considered sufficient by
enterprises to manage and safeguard an infrastructure as large
as the smart grid, but these models do not extend beyond tech-
nological automation and governance domains of information
assurance [16]–[18]. Industry guidelines strictly mandate the
presence of humans at the end of the cybersecurity defense
pipeline, and without adequate tools in-place for them to make
sense of the insights delivered by the technologies, a successful
defense strategy cannot be devised in time.

To summarize, most works in the literature provide the
cybersecurity for smart grid by augmenting the utility infras-
tructure with automated tools that are better at event detection
and threat mitigation. While some works tackle the challenge
of visualizing the machine data in a context-aware manner,
they do not factor in the human aspects of cognitive gap, stress
and objectives. Considering the industry guidelines mandate
the presence of humans at the ends of the cybersecurity
pipeline, the proposed framework has a strong scope for use
in electric utilities at their CCCs. It is aimed to create a better
Common Operating Picture (COP), so that more time is spent
making decisions than understanding the situation.

III. DATA MODULE (DM)

The DM is the first module of the proposed framework and
has four engines: the Sources Engine (SE) that includes the
communication channels between raw data sources and the
DM; the Ingestion and Processing Engine (IPE) powered by
Kafka, the Transformation Engine (TE) powered by Apache
Spark and an optional Interim Visualization Engine (IVE)
where data is stored in Hadoop Distributed File System
(HDFS) to offer scalability and reliability. The data from DM
can either be sent to IVE or forwarded to CM for classification.
These engines are briefed below.

A. Sources Engine

Data sources can be broadly subdivided into field and enter-
prise data. Field data includes those recorded by telemetry and
protection coordination devices on the distribution network,
other Intelligent Electronic Devices (IEDs), synchrophasors at
substations, residential smart meters, weather stations, and logs
from smart inverters and production meters of distributed grid-
tied solar Photovoltaic (PV) systems. Enterprise data deals
with the information given by different automated security
tools already integrated into the utility’s Enterprise Informa-
tion System (EIS) such as IDS/IPS, firewall, traffic analyzers,
anomaly detectors, switches, inline blocking tools, and anti-
malware filters. This is illustrated in Fig. 2.

B. Ingestion and Processing Engine

Powered by Kafka, its goal is to map data from hetero-
geneous SE nodes to specific computation nodes of the TE
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Fig. 2. Architecture of the Data Module

and/or IVE. Additionally, it can conduct on-the-fly statisti-
cal analyses of the streams. Kafka is a producer-consumer
subscription-based messaging system for efficient, scalable
and high-throughput interchange of data between sources that
generate data, called Producers and applications that consume
data, called Consumers [19]. Kafka brokers run on computing
nodes within a cluster; each broker consists of Topics, where
Producers push their data into Topics and Consumers pull data
from subscribed Topics. Parallelism can be achieved with data
broken across different Topics and Consumers forming groups,
where each reads a portion of the data so that the group as
a whole has the entire data. The data, Topics and Partitions
can be replicated in order to ensure fault tolerance. Kafka
internalizes the guarantees of consistency and data integrity
and has specific policies in place for scenarios involving data
loss and partition failures. Kafka can also handle on-the-fly
processing of streams like data quality assurance (checking
for completeness, accuracy and origination), outlier detection,
and other exploratory analyses.

C. Transformation and Interim Visualization Engines

The Apache Spark Streaming, an extension of the core
Spark Application Programming Interface (API), converts the
data from consumer nodes in IPE into discretized streams
(Dstreams), which are functional APIs in Scala. The Dstreams
are represented as Resilient Distributed Datasets (RDDs) to
ensure primary data abstraction in Apache Spark [20], [21].
The processed data is then pushed directly into IVE, exported
into relational databases like MySQL, or stored in HDFS.
The IVE uses Tableau integrated with R-server for enabling
rich visualization of the processed information. Additional
DM methods like clustering, correlation, linear regression and
statistical estimation can be integrated at this stage. Next, the
architecture of CM is discussed.

IV. CLASSIFICATION MODULE (CM)

For a given time period T , let the time-series dataset
processed from DM and found stored in HDFS be represented
as X = {x(1)

i ,x
(2)
i , ...,x

(T )
i |i ∈ N}, where N denotes the

set of locations from where data points were collected. For
each location i ∈ N , the measurement x(t)

i ∈ Rm represents
a comma-separated vector of m attributes, encapsulated by
Field and Enterprise data described in Section III.

A. Recurrent Neural Network (RNN)

Sequential data at each time-step is processed using RNN
through an adaptive modeling of the data’s uniquely dynamic
information. For a given input sequence X , the RNN node z(t)

i

inputs a sample of the current input x(t)
i at the time-step t and

the state value h
(t−1)
i in the hidden layer at the previous time-

step t− 1. The sequence of state values {h(t)
i } is defined as:

h
(t)
i = ψ(z

(t)
i ) = ψ(Whh

(t−1)
i +Wxx

(t)
i + b), where ψ(·) is

the activation function, typically defined by tanh; Wh ∈ Rn×n
and Wx ∈ Rn×m are the RNN weight matrices, where n
denotes the number of the hidden neurons and m represents
the number of neurons in the input layer; and b is the bias
vector. For a given initial state h

(0)
i , the RNN architecture

can be trained through the gradient descent algorithm, which
is a first-order iterative and gradient-based learning method.
However, the vanishing problem of the gradient calculation
can make it difficult to train the RNN architecture [22].

B. Long Short-Term Memory (LSTM)

The LSTM is a specific type of the RNN, which overcomes
the vanishing gradient issues. The LSTM architecture has a
chain structure similar to the RNN, but there are four layers
of neural networks, each with a hidden layer. In addition, the
LSTM is fully connected with cells, and each cell at time-step
t is composed of three gates: (1) the input gate z

i(t)
i to regulate

the amount of the LSTM input data x
(t)
i at time-step t; (2)

the forget gate z
f(t)
i to regulate whether the information to

be transferred from the time-step t− 1 to the time-step t; and
(3) the output gate z

o(t)
i to regulate the amount of the LSTM

output data at time-step t. The architecture of the LSTM can
be calculated iteratively through the following equations:

[z
o(t)
i , z

i(t)
i , z

(t)
i , z

f(t)
i ]T =Whh

(t−1)
i +Wxx

(t)
i + b,

c
(t)
i = σ(z

f(t)
i )� c

(t−1)
i + σ(z

i(t)
i )� tanh(z

(t)
i ),

h
(t)
i = σ(z

o(t)
i )� tanh(c

(t)
i ),

(1)

where Wh ∈ R4n×n and Wx ∈ R4n×m are the LSTM weight
matrices, and b ∈ R4n is the bias vector. The � operator
denotes the element-wise product between the vectors, and
the σ(·) represents the sigmoid function. For the given states
h
(0)
i ∈ Rn and c

(0)
i ∈ Rn, the LSTM model can trained using

Back Propagation Through Time (BPTT).
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Fig. 3. Architecture of the Classification Module

C. Applying LSTM to CM

The goal of CM is to take incoming streams of data from
DM as inputs and classify them into one of the four categories:
Error- potentially a device, application or communication-
level error (e.g., communication failure, measurement error,
mis-calibration, unresponsive polling registers); Natural- re-
sult of an environmental event (e.g., fault due to lightning
strikes or salt deposition from rainwater, extreme weather
events like hurricanes); Malicious- result of an impending or
successful attack; and Normal- does not belong to any of
the prior categories. Smart grid is a cyber-physical system
with strong interdependencies between physical and cyber
realms [8]. Since the utility has systematic and well-developed
methods in-place to deal with Error and Natural datasets, the
CM lays its focus only on the Malicious datasets. LSTM does
not require feature engineering but the model can be supported
with rationales shown in Fig. 3 during the training phase.

The CM is trained using BPTT to correct its weights, and
during the testing, it takes processed data vector X from the
DM’s output sources (HDFS or MySQL). It is the output from
the current unit that would be one of the four categorical
variables. The data categorized as Malicious is read by AM
from HDFS for decision-making. While security tools could
have false positives, feeding them through CM would help
detect and correct them prior to visualization.

V. ACTION MODULE (AM)

To understand the significance of this module, smart
grid’s cyber-physical view must be augmented with a third,

Fig. 4. Architecture of the Action Module

more subjective realm called the cognitive realm. It includes
both human behavior as well as performance characteristics,
and completes the circle of smart grid security. The Data-
Information-Knowledge-Wisdom hierarchical model describes
a pyramid representing the transformation of raw data from
sensors to information through cybersecurity tools, then into
knowledge (captured by DM and CM) and finally to wis-
dom via appropriate cognition and decision-making [23]. The
decision-making models are embedded in cognitive models,
which are in-turn built within a cognitive architecture, and
account for gaps in cognition, knowledge, semantics and
network. Utilities may have situations where it is required to
model not only an individual’s SA but a team’s where different
individuals have parts of information that when combined
would complete the picture (shared SA).

As shown in Fig. 4, the parameters that contribute to
individual or shared SA can be grouped into two sets: cognitive
parameters- the traits that define the mental model of and
differentiate the human users summarized in Table II. It
captures how different users might respond to the same sit-
uation differently; and enterprise parameters- the traits which
define the utility’s predefined expectations from the users.
These expectations might differ across organizational units,
job profiles, and can be disrupted when the time or mission
is critical. These parameters are also fostered by the utility
policies and governance rules. These two sets of parameters
enrich the decision-making model, making it unique to each
individual or team, thereby leveraging the maximum potential
of DM and CM and catering it best to the needs of the user(s).

A. Naturalistic Decision Making (NDM)

Its main objective is to describe how people make decisions
in real-world settings under time-critical situations, where
cognitive parameters like degrees of trust and correctness,
cognitive stress, and prior experience are considered [24].
Specifically, Recognition-Primed Decision (RPD) is one pop-
ular model to describe how people make effective decisions
using their experience, which can be categorized into two
parts including the situation recognition and the solution
generation. For situation recognition, the module acquires
the most important features from the current situation and
then compares them with corresponding features saved in its
working or short-term memory based on the past experiences.
The situation can be confirmed if the totally same features can
be founded in the memory parts. The corresponding solution is
then recommended. If it is a partial match, the module seeks
more information or reassesses the situation until it secures
a match. However, if the situation is completely unfamiliar
(no match), the module checks for the availability of a best
action in its long-term memory that could have been recorded
in distant past. If there is no match there, it elicits more
information until it either discovers a match in long or short-
term memory and recommends the associated decision.

Based on the identified situations in the module’s memory,
the current situation evaluation and assessment will first pro-
duce the most relevant cues, which can be implemented to
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TABLE I
THE DIFFERENT ALGORITHMS OF THE TRI-MODULAR FRAMEWORK.

Module
Name

Algorithm(s) Included Tool(s) Evaluation Methods Performance Description

Data
(DM)

Multiple imputation;
Linear correlation;
Linear/polynomial regression;
Maximum Likelihood Estimator

Kafka;
Apache Spark;
R;
Tableau

Null Hypothesis Testing;
Pearson Correlation;
PDF Comparison;
Little’s Test;
Cohen’s Distance Test

H0 : µo = µi

(mean equals for original and imputed data);
ρo,i = cov(X,Y )/(δ(X)δ(Y ));
Pr[a ≤ X ≤ b] =

∫ b
a fX(x)dx;

t = (X − µ)/(δ/
√
n);

d = (µo − µi)/SD
(SD is standard deviation for samples)

Classify
(CM)

LSTM TensorFlow
MSE & MAPE;
Confusion Matrix

M = (100/n)×
∑n

t=1 |(At − Ft)/(At)|;
True Positives (TP) and True Negatives (TN)

Action
(AM)

NDM and RDM
MATLAB;
Compendium;
FreeMind

Precision;
Timeliness and Recall

|{relevant}
⋂
{retrieved}|/|{retrieved}|;

|{relevant}
⋂
{retrieved}|/|{relevant}|

summary the situation in high-level. The expectancy can also
be derived to measure the accuracy of the current situation
evaluation [25]. In addition, the expectancy derived in the
current situation will be compared with the expectancies stored
in the long or short-term memory. The current situation will
be classified into a false if the derived expectancy is less than
the stored expectancies. Therefore, the more information is
needed for the current situation evaluation. Finally, the module
implements mental simulations to experiment actions derived
from the recognized situation. Due to time-criticality, they
might not consider all cognitive and enterprise parameters.

B. Rational Decision Making (RDM)

It is used for generating optimal actions based on current
situation when timeliness of the decision is not critical [26].
Note that timeliness in this case is only relaxed in comparison
to NDM but not eliminated. It consists of: 1) monitoring
process, which collects the data, in this case, the Malicious
data from HDFS, and 2) decision process, which converts
current expectations based on collected measurements into an
action selection using the stochastic control theory.

To understand the course of an optimal decision process, we
define the deadline respect to go-trials as Dt, a cost function
on each trial to be cc per unit time, a penalty for choosing
to respond on a stop-signal trial as cp. If the trial termination
time is denoted by τ with τ = Dt when no response is taken
before Dt, and τ < Dy otherwise. The optimal decision policy
intends to minimize the average loss:

Lπ =cc(τ) + cprP (τ < Dt|s = 1) + (1− r)P (τ = Dt|s = 0)

+ (1− r)P (τ < Dt, δ 6= d|s = 0)
(2)

Since minimizing Lπ over the policy space directly is com-
putationally intractable, the dynamic programming provides an
iterative relationship in terms of the value function (defined as
cost here) where a ranges over all possible actions:

V t(bt) = min
a

[

∫
p(bt+1|bt; 1)V t+1(bt+1)dbt+1], (3)

C. Applying NDM and RDM to AM

As defined earlier, NDM and RDM heavily rely on two
sets of parameters: a) Cognitive: it includes the degree of
trust (∈ [0, 1])- influenced by data accuracy, completeness, and
availability; the degree of correctness (∈ [0, 1])- quantifies data
consistency and plausibility; stress- predetermined tasks that
users must perform in a given time window; bias- partiality
that users might show to address specific tasks before others;
ease of use- user’s level of comfort in interacting with the
modules; prior experience- a catalog documenting responses to
different situations in the past; belief - user’s personal judgment
and evaluation of specific tasks; and memory- most frequently
accessed actions in the short-term and archived actions in
long-term; and b) Enterprise: it includes goals and objectives
defined for the users, the criticality of events to the mission,
the timeliness of response warranted, and the shared and
adversarial natures of SA. Unlike the content displayed by
IVE which is standardized, the information from AM will be
subjective, trained to improve the performance of users.

VI. RESULTS AND DISCUSSION

It would be key to first consider the different users in a
utility CCC who would benefit from the proposed framework
(Table II). In this section, a proof for the framework is shown
by configuring and integrating the four engines of DM. The
input data is the logs captured by the IDS of an electric
utility’s enterprise network. A utility CCC replica located
at the authors’ facility, equipped with high-end processing
capabilities was used. The DM can be implemented in different
ways as summarized in Table III. While a full-fledged infras-
tructure at a utility CCC might employ multi-node clusters
with requirement to process time-series data on the fly, this
paper takes the first step by implementing DM on a single-
node cluster with batch processing capabilities.

A. Batch Data Preparation

Data generated by the IDS of an electric utility was taken
from an online repository. The original data was obtained as
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TABLE II
THE DIFFERENT POTENTIAL USERS OF THE TRI-MODULAR FRAMEWORK.

Category User Title User Role Framework’s Benefit Module
OT Operator Initiating incident response at physical

realm, system alarm diagnosis, grid voltage
management, preventive maintenance
scheduling, system monitoring during

storms, interact with reliability
coordinators and system operators

Better coordinated response from IT teams
in the event of suspicious activities on the
grid, well-informed insight into the cause

behind high-priority or mission-critical
incidents

DM, CM

OT Dispatcher Crew dispatch and tracking to restore
outages, updating Outage Management

System, update member account and meter
information, coordinate with operators to

schedule tickets prior to crew repairs

Improvised outage log data management
and processing for easier analysis and

decision-making

DM

IT Security Analyst Vulnerability assessment of software,
hardware and network, recommendation of

solutions and best practices, incident
diagnosis, security policy compliance

Prioritization of detected vulnerabilities
and recommended solutions to recover

damaged data or assets

DM, AM

IT Security Engineer Monitoring logs, forensic analysis, incident
detection and response, investigation of
new technologies to enhance security

Can leverage functionalities to determine
context across heterogeneous datasets that

will expedite monitoring and analysis

DM

IT Security Architect Design of security infrastructure and its
components

Lower interoperability challenges helps in
adapting design to utility needs

All

IT Security Administrator Installation and management of security
systems of the enterprise

Little to no new security systems need to
be managed or installed

All

IT Security Specialist Any of the above, protection against
malware, record-keeping of prior incidents,

attack vectors and threat actors

The framework assists them on conducting
such tasks at a faster pace, thereby

reducing their stress

AM

(a) (b)

Fig. 5. Results of the DM dashboard: (a) Main dashboard showing the distribution of various data-points sorted by attack categories, the locations where
these attacks were observed, and the time of year when they were observed; (b) A zoomed-in view of results from a clustering analysis conducted on incoming
data points, along with the frequency of occurrence of such clusters across locations

TABLE III
MAPPING OF IMPLEMENTATION SCENARIOS

Cluster Environment Data Flow Scenario Preference
Single-node Batch time-series Previous work

Single-node Stream time-series Current work

Multi-node Stream time-series Envisioned Goal

raw comma separated text files with the following attributes:
the number of records with similar signatures, the type of

attack category, the source and destination bytes, the duration
and flag, and the communication protocol used (tcp or udp).
To demonstrate better processing capabilities, a few other
attributes were synthesized and incorporated into the dataset.
The introduction of these synthesized values was randomized
to ensure no bias. The total number of records was divided
into equal sets of three, each comprising 41, 991 records.
Specific location tags were associated with each set: Daytona,
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Miami and West Palm Beach. In each set, a vector of hourly
timestamps from Jan 01 to Dec 31, 2017 were assigned
randomly to the records ensuring every timestamp was utilized
at least once. Finally, using the documentation available in
the literature for each attack type, an attack category was
defined. For example, attacks like portsweep and satan were
grouped as Probe attacks, while neptune and smurf attacks
were considered as Denial of Service (DoS).

B. Discussion

Figure 5 comprises two renditions of DM’s IVE realized us-
ing Tableau and R-server. The primary view of the dashboard
at a time-instant is shown in Fig. 5a, which has five major
divisions, A through E. Division A represents a histogram
bar-chart of the different primary attack categories found in
the dataset. This gives the users a quick idea about which
attack category is more prominent in the environment at that
instant. Division B shows the distribution of these attack
categories across three locations for 2016 and 2017. Division
C displays the frequency of occurrence of attack types within
each category for each location. Division D identifies the
magnitude of prevalence among different attack types for each
category. Division E keeps the legend of all color-coded attack
types and categories active in the view. It can be seen that
the organization of information is structured to first acquaint
the users’ minds with a bigger picture and then drill down to
finer details only on a need-to-know basis which is enabled
by mouse clicks and hovers. Upon clicking and panning,
more complex analyses can be performed. Figure 5b appears
when zoomed into Division C, where clustering analysis is
conducted to group data into different attack categories.

VII. FUTURE WORK AND CONCLUSION

This paper described a detailed architecture of the frame-
work’s three modules, DM, CM and AM, detailing how they
can be realized and which human users within the utility CCC
would be the potential users. This framework reduces the
cognitive gap through its three modules and increases the situ-
ation awareness. Significant future work stems from this work.
Most utilities employ a comprehensive Syslog based event data
collection. JSON-based Elasticsearch-Logstash-Kibana (ELK)
stack will be considered to modify DM’s IVE. Using Syslog as
the raw data bank, it can be configured to forward information
to Hadoop for management. ELK stack can also be integrated
easily with Hadoop and supports R and Python. While the core
architecture of DM is realized, its implementation in a multi-
node cluster with stream processing features will be developed.
The CM and AM will also be developed and integrated
with the modified DM to realize the full framework. Besides
Enterprise data, some Field data will be used to explore the
capability of DM to handle heterogeneous sources.
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