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Abstract—To minimize the effort required by human security
operators in understanding and resolving attacks on the smart
grid cyber-physical system, automated detection, prevention and
mitigation tools have been integrated into the infrastructure.
However, existing visualization frameworks at command and
control centers present information from such tools in a non-
intuitive, non-contextual format, reducing the situation awareness
and timeliness of decisions. There is a need for frameworks that
can contextualize the data in a human-understandable format
prior to visualizing. To this end, the paper conducts a high-
level review of existing literature, and introduces a conceptual
human-on-the-loop framework of three modules: data analyzer
comprising Kafka, Apache Spark and R, classifier comprising a
deep neural network, and situation-aware decision-maker com-
prising a learning-based cognitive model. Preliminary proof of
concept is shown for data analyzer by applying it to contextualize
alerts from multiple photovoltaic systems in Florida.

Index Terms—smart grid, cyber-physical security, human-on-
the-loop, situation awareness, Apache Spark, data processing.

I. INTRODUCTION

Recent successful cyber-attacks involving the BlackEnergy3

malware on the Ukrainian smart grid in 2015 and Stuxnet

worm on the Iranian nuclear power plant in 2009 have in-

creasingly targeted the smart grid infrastructure [1]. Increased

penetration of Renewable Energy Systems (RESs) like solar

Photovoltaic (PV), and proliferation of ubiquitous IoT sen-

sors capable of bidirectional communication have made the

power grid more vulnerable to potential cyber-physical attacks

(henceforth referred to as attacks in this paper) [2]–[4]. A suc-

cessful attack on one realm (cyber or physical) has significant

impacts on the other (physical or cyber, respectively) [5].

Extending from the National Institute of Standards and

Technology (NIST) smart grid framework, five key logical,

interdependent components can be identified, shown under the

Physical Realm in Fig. 1. Correspondingly, logical components

on the cyber realm can be broadly divided into three: avail-

ability, integrity and confidentiality. The North American Elec-

tric Reliability Corporation (NERC) has stipulated multiple

standards including the Critical Infrastructure Protection (CIP)

guidelines for physical security, personnel training, informa-

tion protection, access control, and more. NERC also recom-
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Fig. 1. Broad view of smart grid cyber-physical interdependencies

mends the inclusion of human in the loop of cybersecurity

design solutions in addition to an increasing implementation

of automated tools [6]. However, the increasing performance

and reliability of automated tools such as Intrusion Detection

and Prevention Systems (IDS/IPS), firewalls, honeynets and

honeypots, etc. imply more cyber-physical events for the

humans to analyze and resolve in the same period of time. This

places an unprecedented amount of stress on the operators,

and increases the room for erroneous decisions. The non-

intuitive visualization of such events without first generating

any context has compounded the problem. Many visualiza-

tion interfaces still rely on manual parsing and analysis of

unstructured security data [7], [8]. Hence, there is a critical

gap between the rate at which new events are visualized and

the rate at which the human operators can capture all such

visualized events before they lose their time-associated value.

This gap creates a need to develop approaches that convert the

machine-generated wealth of data into human-understandable

format (called actionable information) that can yield well-

informed decisions [9], [10].

The main contributions of this paper are twofold: 1) Steering

the research towards proactive attack resolution by introduc-

ing a conceptual tri-modular, human-on-the-loop framework

to transform useful, contextual data into actionable human-

understandable format; and 2) Demonstrating a preliminary

proof-of-concept by applying one of the modules of the

framework to protect real grid-tied PV systems across Florida

from a specific class of data integrity attacks. The real-time

raw alert logs from the systems’ smart inverters and production

meters are collected and aggregated using Kafka, structured



and managed using Apache Spark, and analyzed using R to

provide contextual meaning. The objective of this paper is not

to encourage a replacement of existing cybersecurity toolset,

but to complement them with an equally powerful visualization

framework to leverage better decision-making. As a future

work, all the modules of the framework will be validated

on the same system domain, and the complexity of attack

scenarios will be increased.

The rest of this paper is organized as follows. Section II

conducts a high-level review of related literature, discussing

existing and emerging methods to secure smart grid. Section

III introduces the proposed framework, defines briefly its

related concepts, and elaborates on its three modules: Data,

Classification and Action. Section IV applies the Data Module

to real grid-tied PV systems in Florida and elaborates how the

achieved results meet the module’s objective. Finally, Section

V gives a summary and highlights future work.

II. RELATED WORK

The literature on cybersecurity technologies for smart grid

can be broadly grouped into existing and emerging modes of

protection. While a detailed review of each protection method

is beyond the scope of this paper, a high-level summary of the

protection modes is provided in this section.

A. Existing Modes of Protection

Standards detailing multiple guidelines and best practices

have been published by various industry bodies such as

IEEE, NERC, NIST and the Department of Energy (DOE),

summarized in Table I [11]–[18]. The gap in these standards

is discussed briefly below.

1) Cybersecurity Standards Gap

While security standards for Information Technology (IT)

like ISO/IEC 27001 and 27002, and RFC 2196 have been

streamlined over the years through revisions, the same is not

true for Operational Technology (OT). With more interdepen-

dencies between IT and OT, the standards have focused on

cyber-physical linkages, and how they could be exploited to

create successful attacks. Further, they also prescribe cryp-

tographic techniques, encrypted communication, end-to-end

authentication and protocol-level security policies, all of which

are resource-intensive and need frequent patches and upgrades

[19]. Included in the standards such as NISTIR 7628 Revision

1 and NERC guidelines for Human Performance are methods

to address the human-in-the-loop aspect of cybersecurity,

which include disgruntled employees, human errors, awareness

and training, access controls and certifications [20]. However,

they ignore human-on-the-loop, which deals with the lack

of Situation Awareness (SA) or a Common Operating Picture

(COP) (terms defined in Section III), increased cognitive load

and stress that contribute to lower attention span, and the

difference in speed between technology and human cognition

processes. The standards for smart grid cybersecurity reviewed

in the literature largely fail to address this key aspect. Hence,

there is certainly a need for a shift in security paradigms that

not only consider human behavior but also human performance

and human-machine-interaction as part of the problem.

2) Defense-in-Depth

When only a few layers of a system are secured, a successful

attack on an insecure layer could propagate to secure layers

[21]. The smart grid is one such system, with multiple interde-

pendencies between constituent layers, as shown conceptually

in Fig. 1. Hence, a defense-in-depth approach advocates defen-

sive technologies at each layer with the aim to exhaust attacker

resources, delay or dilute the impact of successful attacks, and

give defenders more time to respond [22]. However, it has

been shown in the literature both by reviewing past events

and examining the model itself, that this approach, originally

used in kinetic warfare, does not efficiently translate into

cyber-warfare [23]. The security in each layer is provided by

different vendors so that when an attacker breaks one layer,

the same techniques cannot be exploited to break the next

layer. However, issues with interoperability and information

exchange have compounded the problem and increased system

vulnerabilities at the expense of operational inefficiencies.

Although the approach is touted to be one of the most

progressive modes of protection, recent advances in smart grid

like IoT, cloud and edge computing, and adoption of cellular

communications, encourage its adoption in conjunction with

other emerging approaches like defense-in-breadth.

B. Emerging Modes of Protection

Under an IoT-enabled smart grid, the components comprise

heterogeneous nodes like smart meters, Phasor Measurement

Units (PMUs) and Intelligent Electronic Devices (IEDs), each

of which are either periodically or constantly online, send-

ing bursts of data [24]–[28]. Unlike Defense-in-Depth which

offers a layered security to the entire system, a Defense-in-

Breadth approach implements multiple security methods at

each layer of the system. Smart grid layers can be encapsulated

using the GridWise Architecture Council-defined GWAC 9-

layer Stack for interoperability and the ISO Open Systems

Interconnect (OSI) 7-layer model for communications [29]–

[31]. Both defense-in-depth and defense-in-breadth are human-

in-the-loop approaches, considering human behavior as part

of the problem. They account for appropriate defenses to

address defective users, human errors and lack of technical

awareness. However, they do not directly address the aspect of

human performance and human-machine-interaction, and more

specifically the gap between what is visualized and what they

understand in order to make well-informed timely decisions.

III. THE PROPOSED FRAMEWORK

The primary objective of the proposed framework is to

complement existing, automated cybersecurity tools at the

utility CCCs by processing, contextualizing, classifying and

rationalizing the data obtained from such tools to provide a

need-to-know basis visualization of potential decisions that

help human operators better understand and interpret the

information presented. This in-turn contributes to an increased



TABLE I
BRIEF SUMMARY OF SMART GRID CYBERSECURITY STANDARDS.

Body Standard Core Contribution
NERC CIP 002-011, 014 Guidelines to protect critical assets of Bulk Energy Systems (BESs) and train human personnel

NIST FIPS series Security requirements for cryptographic modules, digital signatures, encryption, and categorization of
federal information systems

NIST Executive Order 13636 Preliminary cybersecurity framework defining five functions: identify, protect, detect, respond, recover

NISTIR 7628 Rev 1 Guidelines for smart grid cybersecurity (includes human-in-the-loop security)

NISTIR 7823 Advanced Metering Infrastructure (AMI) smart meter upgradeability test framework

IEC 62351, 62443 Security for industrial automation and control systems; ensuring availability, integrity and
confidentiality of power system protocols

IEC TC57 WG15 Security
Standards Version 14

Security of the communication protocols identified by series in IEC 60870-5,-6, IEC 61850, 61970 and
61968

SA that reduces the amount of time the operators spend

manually interpreting information, and helps them make well-

informed decisions in a timely manner [32].

Humans are at the end of the cybersecurity pipeline and

their decisions must be backed by sound information as-

sociated with the context of the system’s current situation

[33]. They should reflect the growth of the decision-maker’s

knowledge due to experience, new inputs and dependencies

and unprecedented events. Realization of such models is the

highest evolution of security design for utility CCCs to parry

attacks proactively. In order to better understand this approach,

it is important to first look at a few associated concepts,

summarized below:

Contextualized Information: To successfully counter a

cyber-physical attack, it is important to view the threats and

vulnerabilities of concerned systems not in isolation but in

conjunction with external variables. For example, the security

of PV systems is to be placed in the context of multiple ex-

ternal parameters such as location, weather, device calibration

and measurement accuracy and human errors thereof, fault-

tolerance of the communication infrastructure, and equipment

specifications [34]. Then, the alerts from smart inverters due

to communication failure during a stormy day could be ruled

out. Hence, by giving context to data, previously unknown

associations can be derived to gain more knowledge.

Situation Awareness: It is defined as the composition of

three levels: perception (detection of crucial information about

the system and its environment), comprehension (quantifying

the data’s significance and meaning in relation to the indi-

vidual’s goal), and projection (determining how this data will

impact the future state of the system and its environment)

[35]. The individual’s stress, experience, missions and goals,

Fig. 2. Situation awareness conceptual model

long-term memory and working memory are captured by

cognitive models, and the system’s automation, complexity

and interface are captured by mental models. The SA of a

defender must also encompass the SA and objectives of the

attacker. However, SA itself is a subjective concept, with

certain individuals having overlapping aspects (called, Shared

SA) and others having disjointed or conflicting aspects (called,

Adversarial SA).

Common Operating Picture: It is important to contex-

tualize data not only with dependent factors, but also with

its impact on a defender’s mission, his ongoing operations,

cost and position in the general topography of the grid. A

COP maps contextual data with its impact on mission and

operations, and customizes that information to each operator

to help them understand and act upon the information in a

timely manner [36]. SA is a subjective concept that varies from

one operator to the other, and so does COP. To this end, the

proposed framework comprises three key modules, illustrated

in Fig. 3 and conceptually briefed below.

A. Data Module (DM)

The key goal of DM is to ingest, manage and process

security data from various domains of smart grid using a

data aggregation engine powered by Kafka, stream processing

engine powered by Apache Spark, and a statistical engine

Fig. 3. The proposed framework and relation of its modules to SA levels



TABLE II
THE THREE MODULES OF THE PROPOSED FRAMEWORK.

Module Name Algorithm(s) Included Input(s) Output(s) Evaluation Methods
Data (DM) Multiple imputation, linear

correlation, linear/polynomial
regression, Maximum Likelihood
Estimator (MLE), associative rule

mining

Raw structured or
unstructured alerts and
logs from security tools

or end-devices

Processed, contextualized
dataset of acceptable

quality

Null hypothesis testing,
visual cues, comparing

PDF of original and
imputed data, Little’s

Test, Cohen’s Distance
test

Classification (CM) Long Short-Term Memories
(LSTM) Recurrent Neural

Network (RNN)

Processed, contextualized
dataset of acceptable

quality

Data classified into four
categories based on
defined rationales

Mean squared error,
confusion matrix,
precision, recall

Action (AM) Instance-based Learning and
Bayesian inference

Data classified into four
categories based on
defined rationales

Actionable data: ranked
vulnerable devices,
likelihood of trust,

optionally recommended
action steps

precision, timeliness and
recall, risk-tolerance

powered by R. It establishes context for that data by utilizing

other environmental variables such as access control lists,

external weather, employee information, equipment and tool

logs, etc. DM is responsible to conduct descriptive analytics

on cleaned, good quality data:

• Ingestion deals with collecting real-time data generated

by tools like IDS, IPS, firewall and network analyzers,

or alert logs and last gasps from field devices. The

heterogeneous, often multi-dimensional, data is subjected

to structuring and cleansing, including missing data es-

timation, splicing, and transformation, to get the data in

required format. Optionally, quality assurance methods

are also conducted to ensure logical consistency, accu-

racy, plausibility and origination.

• Different descriptive methods can be applied to derive

context: correlation to understand attribute relationships,

regression to determine the likely dependencies between

dependent and independent variables, association rule

mining to identify the most frequently occurring rela-

tionships between categorical attributes, and model fitting

to determine the properties of numerical attributes such

as Probability Density Function (PDF), skewness and

corresponding statistical significance. Additionally, ex-

ploratory analysis to measure mean, variance and outliers

can also be included in DM.

B. Classification Module (CM)

The CM constitutes Level 2 of SA. Its key aim is to

discover more insights into the data from DM. It uses a Long

Short-Term Memory (LSTM) model to classify the data into

four categories: normal (no abnormality), erroneous (due to

device failure or faults), natural (due to inclement weather

or extremities), or malicious (due to accidental or deliberate

attacks internal or external to the system domain). LSTM is

a Recurrent Neural Network (RNN) best suited to operate

on time-series data [37]. Considering this study employs a

streaming data that is tagged with timestamp information, it

is a case of time-ordered dataset when accumulated. With

the discrepancies due to missing, corrupted or unordered data

points will be corrected by DM, the data fed into CM will

be a structured, time-series data. Studies in the literature have

attempted to exploit the capability of LSTM to learn features

on the fly by looking at the test data. However, it entails a

risk of data classification in a manner that does not meet the

objective. Hence, it is crucial to define classifier rationales,

some of which are listed below [38], [39]:

• Malicious events use knowledge of the underlying envi-

ronment, but errors lack that intrinsic intelligence

• Malicious events agent-driven, errors are event-driven

• Natural events are spurious and unprovoked while errors

are persistent

• Natural events can be understood by associating with the

weather data

• System errors of the same type have a tendency to

bear the same signature/pattern, and the repetitive trends

observed in historical data could be easily used to distin-

guish errors from attacks

C. Action Module (AM)

This module forms the Level 3 of SA by first mapping

the cognitive model of the operator it interacts with, and then

feeding the information from CM into the model to derive

projections (in the form of decisions or recommendations)

which can be visualized for the operator. The module begins

with a memory constructed based on the operator’s responses

to a detailed survey that captures their prior knowledge of

and beliefs about the system. It then learns by capturing their

responses to events, preconceptions to certain events, degree

of trust on specific data (a probabilistic value), the level of

criticality they assign to events, and cognitive stress. It em-

ploys a working memory and a long-term memory to enhance

its performance in terms of recall, timeliness and precision.

However, the final decision-making capability still rests with

the operator. For instance, AM could, based on its assess-

ment of the information it receives from CM, understand

that certain types of devices on the grid require a firmware

update at the earliest to avoid a successful exploitation of

specific vulnerabilities in the existing version. Depending on



the operator’s priorities, AM could decide to either queue this

message or preempt it for immediate attention. However, the

final decision on whether to execute the requested firmware

update rests with the operator himself. Since the decisions

made by the operator modify the grid variables, this framework

employs a feedback loop to account for such changes.

IV. CASE STUDY: PROTECTING GRID-TIED

PHOTOVOLTAIC SYSTEM

In this section, the proposed Tri-Modular Framework is

applied to the domain of grid-tied Photovoltaic (PV) systems.

The domain comprises three geographically dispersed PV

systems, located at Miami, Daytona and West Palm Beach

in South Florida. The three systems are of similar generation

capacities and employ a string inverter topology wherein

multiple inverters are daisy-chained and the net aggregated

energy is recorded by revenue grade production meters. This

section delineates how the models of DM tabulated in Table

II are used to derive context to the inverter alerts and local

weather (Direct Normal Irradiance-DNI, Global Horizontal

Irradiance-GHI, Diffuse Horizontal Irradiance-DHI, dew point,

temperature, precipitation, and atmospheric pressure) recorded

by the each system’s Data Acquisition Unit (DAU) [40].

A. Attack Scenario

Utility dispatchers make crucial decisions based on the load

patterns and power available to conduct demand response,

peak load shaving, direct load control and other processes.

When PV systems are a part of the local generation mix, the

dispatchers monitor the real power injected into the grid by

these systems to allocate the power distributed by a substation

such that the loading on the segments and on the overall

feeder do not exceed the thresholds [41]–[43]. An attacker,

with the aim of triggering cascading failures, could inflict a

data integrity attack which tampers with the settings of the

smart inverters or data recorded by the meter. Falsified data

leads the dispatchers to make erroneous decisions, potentially

overloading a line [44], [45]. Specifically, the attacker could:

1) Tamper with the production meter to reflect a generation

lower or greater than the actual

2) Exploit the communication protocol used by inverters to

alter voltage values at the registers polled by DAU

3) Intercept the communication channel to steal the infor-

mation transmitted and derive system generation behav-

ior to cause a secondary attack

4) Tamper with inverter and meter settings, send false

alarms and reduce operational efficiency

There are more types of attacks possible under this domain,

but an elaboration on them is beyond the scope of this paper

since it focuses on mining context from different data sources

which then serves as a precursor for CM and AM to detect

potential weaknesses in the system.

B. Apache Spark, Kafka and R Engines

As stated earlier, DM comprises three key engines: Kafka

for data ingestion and aggregation, Apache Spark for process-

Fig. 4. The internal architecture of DM

ing and management, and R for statistical analytics on the

processed data. The sequential interaction between these three

engines is shown in Fig. 4. The data from field inverters and

local weather stations from each PV system is fed into Kafka’s

producer-consumer engine at intervals of seconds. Kafka is a

middleware distributed streaming platform that forms a real-

time data pipeline [46]. It structures and standardizes the

incoming data into topics, which are further divided into par-

titions. The custom Kafka consumer node used here decreases

the latency of ingestion and aggregation, considering the high

volume of incoming data. The spark streaming converts the

aggregated data from Kafka into input discretized streams

(Dstreams), which are functional Application Programming

Interfaces (APIs) in Scala. The Dstreams are represented

as Resilient Distributed Datasets (RDDs), to ensure primary

data abstraction in Apache Spark [47]–[51]. The processed

data could be pushed either directly into the dashboard, or

exported as structured data to other modules. R, an open-

source statistical analytics software, is used to conduct further

analysis on the processed data obtained from Spark. The

processes depicted by Fig. 3 were implemented using R and

the results visualized as dashboards developed using Tableau

software. Alternatively, the results could directly be fed into

CM for further analysis.

C. Discussion of Results

The front-end dashboard interface for DM comprises of

four divisions which can be dynamically populated based on

the availability and priority of the data. An example scenario

is considered to demonstrate the results: three grid-tied PV

systems are being monitored by the operator at this instance,

and the DM has access to the alert logs and weather data

from these sites for a period of one year. A view of the entire

dashboard is shown in Fig. 5. The main goal of the operator

here is to study the relationship between the number of inverter

alerts and external weather conditions, with a hypothesis that

certain weather conditions might contribute to an increased

number of times an inverter malfunctions

Division A1 in the figure illustrates the total number of

alerts received from the field inverters mapped against the

various combination of weather parameters that the operator

can select. In this case, he observes that the total number of

alerts was exceptionally high (around 544) for a particular

weather condition involving DHI, DNI, and dew point. This



could imply that the inverters, on an average, were likely to be

more susceptible to malfunctions when specific weather con-

ditions align. Upon clicking the histogram bar that represents

this data in A1, the map in division A3 gets populated with

the cities where these alerts were reported from, in this case,

Miami, Daytona and West Palm Beach. At the same time,

division A2 displays the number of alerts across all cities,

organized month-wise. Clicking a specific histogram bar in

A2 provides a more detailed view of the alerts as shown in

division B1. This view can be filtered by the operator to obtain

city-specific visualization of alerts.

To study the dependency of various weather parameters on

the number of alerts, the operator can click on the histogram

in division C1 to obtain the graphs illustrated by divisions

C2 through C4, with C1 showing the bird’s eye view of the

dependency and C2, C3 and C4 showing number of alerts

with respect to fluctuations in dew point, temperature and

pressure, respectively. The division D is a dynamic menu

item that shows to the operator a high-level summary statistics

on how the site alerts changed over a period of time. The

Fig. 5. Screenshot of the dashboard interface showing results from DM

Fig. 6. Screenshot of graph shown in Division B1 of the dashboard

operator can change the period of observation to the right

(shown here for 2 months) to view the increase or decrease

in alerts from each location during this period. A magnified

visual of C3 is shown in Fig. 6, which gives the operator

a clear idea of the variations in the alert count trend with

respect to changes in atmospheric pressure. The operator here

gets a systematic, intuitive visualization of critical information

on a need-to-know basis, which saves him from information

clutter and instead guides him along a sequential, top-down

visualization to drill into the greater details of the system

state. Further, it also helps add context to the alert data. When

viewed alone, it appeared that the significantly high number

of alerts was anomalous. Closer inspection by associating the

alerts with weather helped infer that the high number was more

likely due to an environmental condition that was prevalent

in April 2017. The operator, at this stage, could choose to

further ascertain this deduction by feeding the data to CM.

Hence, the framework also adheres to the industrial standards’

requirement that the final decision-making should rest with the

human operator.

It is to be noted that the results from DM are interim,

with the results feeding directly into the CM. For the domain

considered, it can be seen that the DM provides results that

greatly elevate the value of the raw data collected from the

PV systems of study by establishing context through mining

previously unknown relationships between parameters (for

example, the potential dependency between different types of

inverter alerts and specific weather conditions as shown in

the divisions C1 through C4). These results will help the

operators better understand the data provided to them for

further processing and analysis using CM.

V. CONCLUSION AND FUTURE WORK

This paper introduces a conceptual human-on-the-loop tri-

modular framework for protecting critical assets of the smart

grid. Designed to complement, but not replace, the existing

cybersecurity technologies but not replace, the framework will

enable utility CCC security operators to better understand and

act upon machine-generated insights, and increase their overall

SA. The framework’s three modules: DM, CM and AM,

respectively, deal with processing and providing context to

raw data; classifying processed data into different categories;

and providing likely projections to operators subject to their

preferences and objectives. To show a proof-of-concept, DM
was applied to real grid-tied PV systems located across

Florida. Data from field inverters and production meters were

collected for a period of 16 months, and the module was used

to discover previously unknown properties and relationships

by establishing a context with local weather data. The results

showed that significant context can be mined from the data,

achieving the intended goal of DM. As a future work, the

other two modules of this framework will be applied to grid-

tied PV systems, and their performance will be evaluated.

The complexity of attacks will be increased by considering

scenarios that also affect confidentiality and availability of

both data as well as power.
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