Reduction of Stray Loss in Power Transformers Using Horizontal Magnetic Wall Shunts

Masood Moghaddami, Student Member, IEEE, Arif I. Sarwat, Senior Member, IEEE, and Francisco de Leon, Fellow, IEEE

1Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174 USA
2Department of Electrical and Computer Engineering, Polytechnic Institute, New York University, Brooklyn, NY 11201 USA

The use of a horizontal arrangement of wall shunts is proposed in this paper as a cost-effective way to reduce stray losses in power transformers. The paper compares the performance of horizontal wall shunts with the available alternative (vertical shunts). 3D finite element analysis (FEA) is used for the calculation of stray losses in tank walls, and other structural parts. A novel hybrid numerical/analytical method is proposed for the calculation of stray losses inside the magnetic shunts. The proposed method is based on double Fourier series expansions of the magnetic field distribution at the surface of the shunts which is determined using 3D FEA. A 200 MVA power transformer is investigated as a case study where the stray losses are calculated with and without vertical and horizontal shunts. A Parametric FEA is carried out to find the optimal placement of the horizontal shunts on the tank walls. Results show that the proposed horizontal magnetic shunts arrangement are as effective as conventional vertical shunts in reducing the stray losses while reducing the weight of the shields, therefore providing a cost-effective method for magnetic shielding of the transformer tank walls.

Index Terms—finite element method, magnetic shielding, power transformer, stray loss, wall shunts.

I. INTRODUCTION

Stray load losses in transformer tanks and structural parts caused by flux escaping the core plays a key role in the transformer overall performance and therefore reducing these losses is of a great importance for manufacturers. Magnetic wall shunts in power transformers are frequently used to reduce stray losses and eliminate possible hot spots in the tank and structural parts (see Fig. 1 (a)). These types of shields create a low reluctance path for the stray flux and prevent it from reaching the tank. Magnetic shunts are built from laminated steel packets to reduce losses due to the normal component of the magnetic field to the shunt surface [1].

The design of magnetic shunts is always a great challenge when designing large power transformers. Many studies on 2D and 3D calculation of leakage magnetic field and eddy current losses in power transformers have been performed [1]–[16]. For calculation of stray fields in power transformers with magnetic wall shunts, 3D modeling is needed to accurately compute the effect of different arrangements of magnetic shunts on the stray losses.

Different structures of magnetic shunts in power transformers are studied in [16]–[25], using FEM analysis. Horizontal magnetic shunts under the transformer yokes are studied in [20], [21]. Also, the effect of the lobe-type magnetic shielding on stray losses of power transformer using 3D FEM analysis is studied. In [10], a numerical method based on network approach is presented and it is used in [21] to model the effect of magnetic shunts on transformer stray flux. Many methods are proposed for nonlinear laminated steel modeling and calculation of its stray loss [26]–[36]. The homogenization method has been proposed in [26], [27] to model the nonlinear laminated steel. In this method the solution needs to be obtained twice which doubles the calculation time. No study has been performed to investigate the effectiveness of horizontal magnetic wall shunts on transformers stray losses. This type of magnetic shunt diverts the stray flux of the three phases to itself and thus prevents the flux from entering the tank. Therefore this technique can effectively reduce stray losses in large power transformers.

In this paper, a horizontal wall shunt arrangement is proposed and its effectiveness is compared against conventional vertical magnetic wall shunts in reducing the stray losses of power transformers. The investigation is carried out using 3D finite element analysis using COMSOL Multiphysics. Stray load losses on the tank walls and yoke beams are calculated using surface impedance boundary condition. Magnetic wall shunts are modeled with nonlinear anisotropic permeability and the corresponding losses are calculated using an analytical method. The presented analytical method uses the magnetic field distribution calculated with 3D FEM, as boundary condition and Maxwell equations are solved inside the magnetic shunts using double Fourier series expansion method. Fig.

Manuscript received January 20, 2016; revised April 28, 2016; accepted September 9, 2016. Corresponding author: A. I. Sarwat (e-mail: asarwat@fiu.edu).

This work was funded by the National Science Foundation under grant number CRISP-1541108.
Fig. 1. Three-phase three-legged 200 MVA transformer; (a) conventional vertical wall shunts; (b) proposed horizontal wall shunts.

1(b) depicts the 200 MVA sample transformer with the new proposed horizontal wall shunts.

II. 3D FINITE ELEMENT MODELING

The 3D finite element method for solving the eddy current problem uses the quasi-static magnetic vector potential PDE formulation given by:

$$\nabla \times (v (\nabla \times A)) = J_e - j \omega \sigma A$$

(1)

Three phase full load current excitation is applied to windings. Since the distance between the tank walls and the outer windings are not equal in all directions, no symmetry boundary condition is applied to the 3D model of the transformer to maximize the accuracy of the analysis.

A. Impedance Boundary Condition

At the boundaries where the magnetic field penetrates only a short distance into the boundary the Impedance Boundary Condition (IBC) is used for approximating the magnetic field penetration into the boundary. The IBC can be used to model a bounded domain as an unbounded region and is a valid approximation if the skin depth is small compared to the size of the conductor. The penetration depth δ is measured using the following equation:

$$\delta = \sqrt{\frac{2}{\omega \mu \sigma}}$$

(2)

The IBC boundary condition, which is a combination of Dirichlet and Neumann boundary conditions, proposes a relationship between the value of magnetic vector potential A and its normal derivative at the boundary. This boundary condition can be written as the following equation:

$$\frac{\partial A}{\partial n} + cA = 0$$

(3)

where c is a constant determined by the permeability and conductivity of the boundary material. Since in power transformers tank walls and yoke-beams are made of iron and the penetration depth at 60 Hz for iron is less than 1 mm, in 3D FEM model of the transformer IBC is applied to the interior boundaries of the tank walls and the exterior boundaries of the yoke-beams.

B. Magnetic Shunt Modeling

Magnetic shunts are constructed using laminated steel and therefore should be modeled with nonlinear anisotropic permeability. The magnetization characteristic of M-5 steel (shown in Fig. 3) is used for modeling the nonlinearities of the shunts. The conductivity of the shunts is set to zero in the FEM model and then the eddy-current losses are calculated with the analytical method described in Section III.

III. MAGNETIC SHUNT LOSS CALCULATION

The losses in the magnetic wall shunts can be calculated using a series expansion of eddy-current loss based on two-
dimensional spatial harmonics of current density inside a magnetic wall shunt. This series can be expressed as follows:

$$P = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} P_{mn}$$ \hfill (4)

where P_{mn} is the eddy-current loss due to spatial current density harmonics. The current density harmonics in the magnetic shunt sheets can be calculated based on an analytical approach provided that the magnetic field distribution on the magnetic shunts surface is known. The analytical solution can be obtained by solving the quasi-static field equations which are expressed as follows [2]:

$$\nabla^2 H = j\omega \mu \sigma H$$ \hfill (5)

$$\nabla \cdot H = 0$$ \hfill (6)

$$J = \nabla \times H$$ \hfill (7)

Figure 3 shows a laminated magnetic shunt with dimensions of $W \times 2L \times d$. It is assumed that spatial distribution of the normal component of the magnetic field (H_z) on the surface $z = 0$ could be written as a double Fourier series expansion as:

$$H_{z0}(x, y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} H_{mn} \cos \left(\frac{m\pi x}{W} \right) \sin \left(\frac{n\pi y}{L} \right)$$ \hfill (8)

where H_{mn} are the double Fourier series coefficients, which can be calculated as follows:

$$H_{mn} = \frac{2}{W L} \int_{0}^{W} \int_{-L}^{L} H_{z0}(x, y) \cos \left(\frac{m\pi x}{W} \right) \sin \left(\frac{n\pi y}{L} \right) \, dx \, dy$$ \hfill (9)

For calculation eddy-current loss of the magnetic shunt, first the loss corresponding to each spatial harmonic is calculated and then the superposition is applied in order to calculate the total shunt loss. The spatial harmonic component of (8) could be written as:

$$H_{z0}(x, y) = H_{mn} \cos \left(\frac{m\pi x}{W} \right) \sin \left(\frac{n\pi y}{L} \right)$$ \hfill (10)

This equation can be used as a boundary condition for (5), (6) and (7) in order to calculate magnetic field inside the shunt. By expanding (5) in the direction of z-axis the following equation is derived:

$$\frac{\partial^2 H_z}{\partial x^2} + \frac{\partial^2 H_z}{\partial y^2} + \frac{\partial^2 H_z}{\partial z^2} = j\omega \mu \sigma H_z$$ \hfill (11)

According to (10) and (11), H_z can be written as follows:

$$H_z = H_{mn} e^{\beta z} \cos \left(\frac{m\pi x}{W} \right) \sin \left(\frac{n\pi y}{L} \right)$$ \hfill (12)

where the permeability of μ is determined based on the magnetic flux density in each wall shunt, which is computed by the 3D FEA, as well as the magnetization characteristic of the M-5 steel, which is presented in Fig. 2.

Using (6) and (12), the following equation can be derived:

$$\frac{\partial H_x}{\partial x} + \frac{\partial H_y}{\partial y} + \frac{\partial H_z}{\partial z} = 0$$ \hfill (13)

$$\frac{\partial H_x}{\partial x} + \frac{\partial H_y}{\partial y} = -H_{mn} \beta e^{\beta z} \cos \left(\frac{m\pi x}{W} \right) \sin \left(\frac{n\pi y}{L} \right)$$ \hfill (14)

It is assumed that the solution for H_x and H_y can be written as follows:

$$H_x = K_1 H_{mn} e^{\beta z} \sin \left(\frac{m\pi x}{W} \right) \sin \left(\frac{n\pi y}{L} \right)$$ \hfill (15)

$$H_y = K_2 H_{mn} e^{\beta z} \cos \left(\frac{m\pi x}{W} \right) \cos \left(\frac{n\pi y}{L} \right)$$ \hfill (16)

where K_1 and K_2 are unknown constants which can be calculated using (13) and (14) as follows:

$$K_1 = -\frac{H_{mn} L^2 mW \beta}{m^2 \pi L^2 + n^2 \pi W^2}$$

$$K_2 = \frac{H_{mn} L \pi W^2 \beta}{m^2 \pi L^2 + n^2 \pi W^2}$$

Thus, the final solution of H_x and H_y can be expressed as following set of equations:

$$H_x = -H_{mn} \frac{L^2 mW \beta}{m^2 \pi L^2 + n^2 \pi W^2} e^{\beta z} H_{mn} e^{\beta z} \sin \left(\frac{m\pi x}{W} \right) \sin \left(\frac{n\pi y}{L} \right)$$

$$H_y = \frac{H_{mn} L \pi W^2 \beta}{m^2 \pi L^2 + n^2 \pi W^2} H_{mn} e^{\beta z} \cos \left(\frac{m\pi x}{W} \right) \cos \left(\frac{n\pi y}{L} \right)$$ \hfill (17)

Using solutions for magnetic field components (17), current density distribution can be calculated using (7) and the following equations can be deduced for the current density components J_x and J_y:

$$J_x = nH_{mn} \left[n^2 \pi^2 W^2 + L^2 \left(m^2 \pi^2 + W^2 \beta^2 \right) \right] \frac{L \pi (L^2 m^2 + n^2 W^2)}{L^2 m^2 + n^2 W^2} e^{\beta z} \cos \left(\frac{m\pi x}{W} \right) \sin \left(\frac{n\pi y}{L} \right)$$ \hfill (18)

$$J_y = mH_{mn} \left[n^2 \pi^2 W^2 + L^2 \left(m^2 \pi^2 + W^2 \beta^2 \right) \right] \frac{W \pi (L^2 m^2 + n^2 W^2)}{L^2 m^2 + n^2 W^2} e^{\beta z} \sin \left(\frac{m\pi x}{W} \right) \sin \left(\frac{n\pi y}{L} \right)$$

Using (18), spatial distribution of eddy-current loss density can be expressed as follows:
Convergence of eddy-current loss equation for magnetic shunt
Harmonic order
Error (%)

Fig. 4. The convergence of the eddy-current loss series expansion presented in (4) for the case study transformer.

\[P_{v} = \frac{J \cdot J^{*}}{2\sigma} = \frac{H_{mn}^{2} L^{2} W^{2} \mu^{2} \sigma^{2}}{2\pi^{2} (L^{2} m^{2} + n^{2} W^{2})^{2}} e^{-2 \text{Real}(\beta)} \]

\[\times \left[n^{2} W^{2} \cos^{2} \left(\frac{m\pi x}{W} \right) \cos^{2} \left(\frac{n\pi y}{L} \right) \right. \]

\[+ m^{2} L^{2} \sin^{2} \left(\frac{m\pi x}{W} \right) \sin^{2} \left(\frac{n\pi y}{L} \right) \] \quad (19)

And the solution for calculation of loss due to normal component of magnetic field at \(z = 0 \) surface can be derived as follows:

\[P_{mn} = \int_{-\infty}^{0} \int_{-L}^{L} \int_{-W/2}^{W/2} P_{v} \, dx \, dy \, dz \]

\[= \frac{H_{mn}^{2} L^{3} W^{3} \mu^{2} \sigma^{2}}{8\pi^{2} (L^{2} m^{2} + n^{2} W^{2}) \text{Real}(\beta)} \] \quad (20)

Using (4) and (20), the total eddy-current loss of the magnetic shunt shown in Fig. 3 can be written as follows:

\[P = \mu^{2} \sigma^{2} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{L^{3} W^{3} H_{mn}^{2}}{(L^{2} m^{2} + n^{2} W^{2}) \text{Real}(\beta)} \] \quad (21)

Equation (21) presents the series expansion of the eddy-current losses of a magnetic shunt based on the Fourier series expansion of magnetic field on its surface.

For the calculation of magnetic shunts losses based on the presented analytical method, magnetic field distribution on the shunts surface is calculated with 3D finite element analysis (FEA) using COMSOL Multiphysics. The calculated magnetic field distribution is exported into MATLAB and the double-Fourier series coefficients of (8) are calculated and using (21) and thus the total loss of the magnetic shunt can be obtained. Fig. 4 shows the convergence of (21) for a sample vertical magnetic shunt. This figure shows that by expanding this equation up to the 15th component in both \(x \) and \(y \) axes, the convergence error would be less than 0.1%.

IV. RESULTS AND DISCUSSIONS

In this section the 200 MVA transformer shown in Figs. 1(a) and 1(b) is considered as a case study to compute the stray losses of tank, yoke-beams, and magnetic shunts for three scenarios: transformer without magnetic shunts, transformer with vertical magnetic shunts and transformer with horizontal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Without Shunts</th>
<th>Vertical Shunts</th>
<th>Horizontal Shunts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank Loss (V)</td>
<td>58993</td>
<td>5981</td>
<td>5458</td>
</tr>
<tr>
<td>Yoke-Beam Loss (W)</td>
<td>17893</td>
<td>5439</td>
<td>5368</td>
</tr>
<tr>
<td>Shunt Loss (W)</td>
<td>1740</td>
<td>2236</td>
<td></td>
</tr>
<tr>
<td>Total Loss (W)</td>
<td>76886</td>
<td>13160</td>
<td>13062</td>
</tr>
<tr>
<td>Total Loss Reduction (%)</td>
<td>82.88</td>
<td>83.01</td>
<td></td>
</tr>
<tr>
<td>Total Shunt Weight (kg)</td>
<td>2671</td>
<td>2009</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5. The mesh of the case study transformer model without wall shunts consisting of 817,155 elements.

Fig. 6. Eddy current density (W/m²) distribution on transformers tank without any magnetic shunts.
magnetic shunts. In the following sections the results are presented and comparisons are made.

A. Transformer without Magnetic Shunts

In this case, the transformer carrying full load is considered and stray losses in tank walls and yoke-beams are calculated. The mesh of the 3D model consists of 817,155 elements and is shown in Fig. 5. The total stray loss is 76.89 kW. The results are presented in Table I. Fig. 6 shows the loss density distribution in W/m2 on tank walls. As it can be seen the loss density on the tank walls in the area between adjacent windings is lower than other areas of the tank walls which is the cause of leakage flux cancellation of adjacent windings. On the other hand, the maximum loss density occurs on the side tank wall. Also, the loss density distribution have a completely different pattern on main tank walls compared with side tank wall.

B. Transformer with Vertical Magnetic Shunts

In this case, vertical magnetic wall shunts are used to reduce stray losses. In front of windings on each limb of the transformer five laminated shunts are placed on the tank walls. Shunts are not placed on tap-changer side of the tank due to its low stray loss. The mesh of the 3D model consists of 2,182,302 elements. The calculation results are presented in Table I. Fig. 7 shows the magnetic leakage flux lines. This figure, shows that flux lines are completely diverted by magnetic shunts and as a result eddy current losses in the tank walls and the yoke-beams are reduced 82.88% when compared with the transformer without wall shunts. The magnetic flux distribution in vertical magnetic shunts is shown in Fig. 8. This figure shows that flux is not distributed uniformly in the shunt packets and it is higher on the side shunt packets. Also, it can be seen that wall shunts in the center phase have a lower flux density. Therefore, the thickness of these shunts can be reduced. Fig. 9 shows the induced current density streamlines on vertical shunt packet surfaces of one phase.

C. Transformer with Horizontal Magnetic Shunts

In this case, horizontal and vertical magnetic wall shunts are used to reduce stray losses. In front of three phases of the transformer, six horizontal laminated shunts are placed on the tank walls (three shunts at top and three shunts at bottom). The mesh of the 3D model consists of 1,853,022 elements. The calculation results are presented in Table I. Fig. 10 shows the magnetic leakage flux lines. This figure, shows that flux lines are completely diverted by the horizontal magnetic shunts and as a result the total eddy current losses in the tank walls and the yoke-beams are reduced by 83.01% compared with the transformer without wall shunts. Based on Table I it can be seen that by using horizontal shunts the total weight of the shunts is reduced by 25% when compared with vertical shunts while stray losses are almost the same. Thus using horizontal shunt walls would be very cost-effective. The magnetic flux distribution in horizontal and vertical magnetic shunts is shown in Fig. 11. Comparing Fig. 8 and Fig. 11 it can be concluded that flux density in the horizontal arrangements of shunts are higher than vertical arrangements and as a result the loss density in horizontal shunts will be higher. Also, it can be seen in Table I that although the total shunt weight with horizontal shunts is 25% lower compared with vertical shunts but the shunt losses is 28.5% higher.

Also, parametric FEA were carried out to find the optimal position of the horizontal magnetic shunts for maximum performance. In Fig. 12, the losses versus the gap between yokebeams and horizontal magnetic shunts are presented. This figure shows that with 150 mm overlap of the horizontal shunts and yokebeams, the transformer will have the minimum stray losses.

V. CONCLUSIONS

A new method for magnetic shielding of the tank walls in large power transformers has been proposed in this paper. The presented method is based on a horizontal arrangement of magnetic shunts on tank walls. It is shown that horizontal
shunts are as effective as vertical shunts in reducing stray load losses. However, horizontal shunts weigh 25% less than vertical shunts. Hence, the proposed horizontal magnetic shunts arrangement is very cost effective. The proposed combined FEM and analytical method provides an effective and accurate method for calculation of induced current densities and corresponding eddy-current losses in magnetic wall shunts. It is shown that the flux is not uniformly distributed in the shunt packets; it is higher in the side packets. Also, wall shunt packets in front of the center limb have lower flux densities. Consequently the thickness of these shunts can be reduced. Furthermore, parametric FEA can be used to find the optimal placement of the magnetic shunts on the tank walls.

REFERENCES

IEEE TRANSACTIONS ON MAGNETICS

