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Abstract: Integration of high volume (high penetration) of photovoltaic (PV) generation with power
grids consequently leads to some technical challenges that are mainly due to the intermittent nature
of solar energy, the volume of data involved in the smart grid architecture, and the impact power
electronic-based smart inverters. These challenges include reverse power flow, voltage fluctuations,
power quality issues, dynamic stability, big data challenges and others. This paper investigates the
existing challenges with the current level of PV penetration and looks into the challenges with high
PV penetration in future scenarios such as smart cities, transactive energy, proliferation of plug-in
hybrid electric vehicles (PHEVs), possible eclipse events, big data issues and environmental impacts.
Within the context of these future scenarios, this paper reviewed the existing solutions and provides
insights to new and future solutions that could be explored to ultimately address these issues and
improve the smart grid’s security, reliability and resiliency.
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1. Introduction

The growing concern for the depletion of the ozone layer and climate change [1,2], partly caused
by power generation from conventional sources, have stirred many countries to make several
projections for large-scale integration of renewable energy sources into their grids [3,4]. Consequently,
the proliferation of power generation from photovoltaics (PV) systems compared to other forms
of renewable energy sources has increased in recent years [5,6]. The fall in the prices of solar PV
panels and the supporting policies made by various government of many countries have aided the
growth in PV usage [7–9]. Figure 1a [10] shows the top 10 countries with solar PV installations in
the world. China, with abundant rare earth metals [11], accounts for almost 34% of the total world’s
installed capacity with more than twice that of Japan (with the second largest PV installation capacity
in the world). Figure 1b [10], shows the aggregate global PV installed capacity. The figure shows the
consistent increase in the installation of PV globally. Over 375 GW of PVs were installed between
2007–2017. Figure 2a, shows the yearly PV capacity additions across the globe. This capacity additions
have been on the increase consistently except between 2011–2012 and 2013–2014. Figure 2b [12],
shows the percentage of global PV capacity additions in 2017, accounting for more than 60% capacity
additions in 2017. The increase in capacity additions is expected to continue based on projections [13],
with China projected to take the lead.

A report by [14] showed that over half of solar installations in US were connected to the distribution
system. There is a projection that 50% to 60% of total US PV capacity from now till 2020 would be
connected to the distribution system.
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(a) (b)

Figure 1. (a) Top 10 PV installed capacities in the world; (b) Total PV installation across the globe from
2007–2017 [10].

There was a 76% rise in residential PV installation capacity in the first quarter of 2015 [15].
In Germany as at 2013, of the total capacity of PV power installation, more than 70% of the installed
PV total capacity is tied to the low-voltage (LV) distribution grid [16].

(a) (b)

Figure 2. (a) Yearly global PV capacity additions [10]; (b) % of global PV capacity additions by countries
in 2017 [12].

The need for decentralized (distributed) power generation has led many of these PV systems to be
integrated with the low-voltage distribution grid. The increase in PV penetration into the grid, however,
has its own challenges. The severity of these challenges most times becomes aggravated with the
increasing level of PV penetration [17]. These challenges also depend on the point of interconnection of
the PV systems on the grid [18,19], as well as the state and nature of legacy devices already installed on
the grid. The proliferation of PV systems tied to the low voltage distribution grid makes it imperative
to review the challenges (both present and future) on distribution grid network systems with high PV
penetration and also propose some possible solutions to mitigate these challenges. The remainder of
this paper is organized as follows. Section 2 presents a summary of the various high penetration PV
challenges with their classification. Section 3 highlights these challenges within the context of future
scenarios, while Section 4 highlights the existing solutions with some future directions. Section 5
presents a summary of Sections 3 and 4, and finally Section 6 concludes the survey.

2. High PV Penetration Challenges

Various definitions for the PV penetration level have been presented in different studies.
According to [20], PV penetration was defined as the ratio of maximum PV power to the maximum
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apparent power of the load. In [21], PV penetration is defined as the ratio of total PV energy generation
to total energy generation. Cheng et al. [22] defined it as the ratio of total PV name-plate to the annual
circuit peak load. Paper [23] defined PV penetration on the low voltage network as:

PVpen =
SPV f eeder

nloads Speak
(1)

where SPV f eeder is the PV power installed under a given feeder, nloads the number of consumers tied to
the feeder, and Speak an estimated value of peak PV power at the feeder. These definitions [20–23] are
regarded as traditional definitions with several limitations according to [24]. The limitations in these
definitions include the effects of PV in voltage regulation, the possible over-voltage due to earth fault
and the possibility of islanding when there are light loads on the feeders.

Various works gave different percentage values as high PV penetration. Authors of [25] suggested
values greater than 20% of total generation, while reports by [26,27] consider high penetrations to
levels up to 15% and 50%, respectively. Although there is no literary standard as to what percentage
of PV penetration constitutes a high PV penetration, as a rule of thumb, many works suggest that at
penetration above 15%, the challenges of high PV penetrations becomes noticeable [28,29].

Challenges with Present Level of PV Penetration

Several countries have achieved some relatively high level of PV integration. Presently,
Germany has about 20% with close to 50% of peak demand [30], California in the US have achieved
20–25% penetration [31], and Hawaii has already achieved a 19% with studies showing a possible 55%
penetration [32]. Several studies have been carried out on the various challenges of the present level of
PV penetration [16,20,33–63].

The intermittent nature of the PV output, its lack of inertia [64–66] like synchronous generators,
and the unidirectional power flow nature of the distribution network present a huge challenge for
higher levels PV penetration. The challenges highlighted from references [16,20,33–63] are within the
context of present level PV penetration. Most of these challenges are still incipient. These challenges
within the current level of PV integration are classified in to six segments based on their areas of impact
as shown in Figure 3.

Figure 3. Classification of various challenges with PV integration.

3. Envisaged Future Challenges of Very High PV Penetration

Globally, there have been consistent increase in PV penetration by power utility companies.
Figure 4 shows the present PV generation in 10 states in the US [67]. Nevada, California, Hawaii,
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and Vermont are all projected to have solar penetration levels above 20% by 2021 [68] and the total
generation of 135 GW in 2040 in the US [69].

Figure 4. Top 10 net PV generation from utility and small scale year-to-date through June 2017
(Thousand Megawatthours).

This continuous increase in PV penetration will obviously pose more technical challenges in the
future, definitely more than what we have at the moment. With high level of PV penetration, a sudden
change in cloud movement or an expected solar eclipse could lead to some serious ramping in the
PV output. This could be as high as 60% of the power output in within a fraction of a second [70],
and 63% of PV output capacity within a minute [71]. This ramping would have greater effects which a
very high level of PV penetration—say 50%. New control strategies have to be developed to cope with
these impending challenges. Improvements have to be made in weather forecasting in other to call
into action storage facilities and other forms of energy generations to mitigate the severe ramping of
the PV output.

The increasing penetration of PV systems requires a proactive approach to the future scenarios.
Figure 5 shows a typical future smart grid in the presence of more smart cities, smart home systems,
plug-in hybrid electric vehicles (PHEVs), more utility-scale PV systems and increased prosumers.

Figure 5. A future scenario with high PV penetration.
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3.1. Future Impacts of PHEVs

Since its launch in the automotive market in 2010, the use of PHEVs has increased drastically.
There is a projection that by 2020, there would be at least 2.5 million PHEVs in the automotive
market [72]. There have been some designs of solar hybrid electric vehicles [73,74]. These vehicles
are projected to drive the future of the automobile industry. Authors of [75,76] suggested that PHEVs
are inevitably going to play a major in the dynamics of the smart grid system in the future. A study
carried out by [77,78] showed the effect of various levels of penetration of PHEVs into the smart grid
at different seasons of the year. When PHEVs are being charged or discharged in large numbers, there
would definitely be some significant challenges on the overall grid stability and power quality [79].
Belmin Memisevic et al. [80,81] showed that PHEVs do have impacts in peak load and power losses, as
well as overloading the transformers with a high level of PHEV penetration and uncontrolled charging.
Though high PV penetration could help mitigate this power loss, it would violate voltage limitations
through a period of high solar insulation. With companies unveiling their various on-road dynamic
wireless charging technologies that would inevitably be powered with solar panels, the level of impact
of these systems on smart grid with high PV penetration is yet to be ascertained.

3.2. Smart Cities

Internet of Things (IoT) enabled smart cities would allow billions of devices and systems to be
connected through the Internet [82]. The concept of smart economy, governance, people, mobility,
buildings, services, infrastructure, surveillance, planning and environs means a whole new technical
challenges for the smart grid with high PV penetration.

Achieving sustainable power supply for the realization of smart cities means the smart structures
would have their own energy management systems [83]. Most of the buildings for smart cities are
proposed to be Net-zero-energy buildings (NZEBs). These are buildings with extremely low energy
demand. Such buildings are designed with very high energy efficiency. There is little difference in the
energy demand by the building and energy supplied to the building can be made up by the installation
of renewable energy (RE) systems on the building. A NZEB building can supply its excess power
generation to the grid [84]. This is in tandem with the distributed energy systems for a smart grid.
Many more rooftops, parking garage solar PV systems will be developed with the NZEBs.

There is also a projected increase in shared renewables such as community solar system [85].
These systems would form some micro grids that would also be integrated with the larger grid
system for a bidirectional energy transfer. This would also usher in the new concept of the nanogrid
which would enable individuals with power generation capabilities from renewable energy sources
to become prosumers (both energy consumer and producer) [86]. There would be future clusters of
several prosumers connected through the nanogrid to the main grid as shown in Figure 5.

With the certain dependence of smart cities on renewables, especially the use of PVs, the variability
of PV power output is expected to pose some technical changes that have to be mitigated.

3.3. Future Impact of Solar Eclipse with High PV Penetration

Solar Eclipse occurs when the moon (which is opaque) passes between the sun and the earth.
The prediction of this occurrence is usually accurate with the time and areas to be affected known.

The first of such event that had a huge impact on PV generation happened on 20th of March 2015
in Europe. A total of 21 GW of power was lost within 90 min [87], while Germany lost 9 GW of installed
capacity within 75 min [88]. Many continental European countries also had some slight frequency
stability issues during the eclipse [89]. Another solar eclipse occurrence is expected in Europe by 2021
and 2026. There is a projection that the total PV installation in Europe will rise to 170 GW and 250 GW
by 2021 and 2026, respectively [90], As a consequence, the occurrence of an eclipse in 2021 and 2026
eclipse would be more challenging.
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The 21 August 2017 solar eclipse in North America also came with its own challenges. A report
by [91,92] showed that PV power generation from utilities fell by 3.5 GW and rooftop solar installation
power lost an estimate of 1.5 GW in California. North Carolina’s generation was estimated to drop
from 2.5 GW to 0.2 GW. Figure 6 [93] shows how the obscurity of the solar eclipse affected the PV
power generation in 10 states in the US. The obscurity was estimated as a percentage of the scenario
with total solar eclipse .

Figure 6. The effect of 21 August 2017 on PV generators in the US.

Figures 7 and 8 shows a 15 min resolution data plot of the actual AC power generation from
two PV sites in Florida. One of the PVs (Figure 7), with an installed capacity of 1.4 MW, is located
on Florida International University (FIU), Engineering Campus while the other with a name plate
capacity of 356 kW (Figure 8) is located at Daytona in Florida. The FIU PV site showed a total drop
in power generation of 660 kW within 60 min (1:45 p.m. to 2:45 p.m.). That is approximately a ramp
rate of 11 kW/min. The other PV site in Daytona ramped from 251 kW at 1:00 p.m. to 25 kW at
2:45 p.m. This is is equivalent to a ramp rate of 2.3 kW/min. The present level of penetration of the
FIU PV is approximately 16%, based on the load on the feeder where the PV is connected. An impact
study of this event was carried out. The system was able to cope with the loss in power generation.
The power quality at the point of interconnection wasn’t compromised. Obviously, with higher lever
of penetration, such occurrences will pose more challenges to the grid.
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Figure 7. Power ramps at FIU PV site during the 21 August 2017 partial eclipse.

Figure 8. Power ramps at Daytona PV site during the 21 August 2017 partial eclipse.

The North American continent is also expected to witness another solar eclipse on the 8 April
2024 [94,95]. It is projected, with the present PV installation growth, that the total utility-scale PV
generation in the US would rise to 50 GW by 2022 [69]. This implies that no less than 50 GW of PV
capacities is expected to be connected to the grid when the next solar occurrence would occur in 2024.
The ramping effects of 21 August 2017 solar eclipse events were mitigated with adequate forecast and
preparations. Several other sources of power such as fossil fuel were used to offset the drop in power
generation so as to maintain power system stability [92].

With the increased drive towards a higher level of PV penetration, it is quite obvious that the
technical challenges of future occurrence of solar eclipses will be more prominent. This paper takes a
look at the various challenges that could impede the stability of the smart grid with high level of PV
integration and proposes several solutions that would help mitigate some of these issues.

3.4. Transactive Energy Concept

The GridWise transactive energy (TE) framework (Version 1.0) [96] defined the TE as a future
electrical system (infrastructure) where the balance of supply and demand is achieved in a dynamic
way. This is done within a framework of economic and control mechanism and each of the operators in
the transactive environment gets value for their participation (inputs). The smart grid dictionary [97]
also defined TE as a ’software-defined grid managed via market-based incentives to ensure grid reliability and
resiliency. This is done with software applications that use economic signals and operational information to
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coordinate and manage devices’ production and/or consumption of electricity in the grid. Transactive energy
describes the convergence of technologies, policies, and financial drivers in an active prosumer market where
prosumers are buildings, EVs, microgrids, VPPs or other assets’.

Future TE scenario would involve total decentralization of the energy power flow. A multidirectional
path for electricity would evolve. The TE architecture allows prosumers to transact energy within
themselves at the distribution levels. TE would lead to the deployment of home energy management
systems (HEMSs). A future TE scenario would involve total decentralization of the energy power flow.
A multi-directional path for electricity would evolve. The TE architecture would allow prosumers
to transact energy within themselves at the distribution level [98–100]. Most prosumers in the TE
environment would have rooftop PV systems. The TE framework would encourage the proliferation
of prosumers which would consequently increase the level of PV penetration. This future scenario
with the nature of PV power generation is expected to pose a whole new challenge on the smart grid.

3.5. Big Data, Communication and Cybersecurity Issues

With increasing PV installations (both utility scale and rooftops), real time data acquisition and
transmission becomes very crucial for efficient monitoring, management and control. The next decades
will usher in the installation of hundreds of thousands of devices for different data-related purposes.
This would consequently lead to some big data, communication and cyber-security challenges.

3.5.1. Big Data

With increasing penetration of distributed energy resources (DERs), such as PV in smart grid, there
would obviously be an astronomical increase in the volume of data. These include, consumer energy
utilization pattern data, smart meter data, data for managing, control and maintenance of devices
(such as PMUs, IEDs , relays, etc.) data from generation, distribution and transmission networks,
and operational data [101]. These volume of data as a result of increasing PV penetration conforms
with the seven big data characteristics, which are [101–105]

1. Volume: There is an increase in the size of the data (smart inverter data, PV generation data,
whether data, temperature data, data for forecasting, etc.) due to increasing PV penetration.

2. Velocity: The speed at which these data need to be acquired and transmitted increases. There is a
need for real time control and data acquisition.

3. Variety: There is an influx of data from different sources. There is heterogeneity in the data
sources including data from weather stations, PMUs, inverters, meters, power quality meters and
other sensors. They usually have different format and structures which need to be processed.

4. Veracity: The accuracy of the data being transmitted and introduction of noise from the devices
and other external sources.

5. Volatility: The length of time to store the acquired data.
6. Validity: This refers to the timeliness of the data, i.e., the value of the data is bound by time, after

which it becomes irrelevant or invalid for processing.
7. Value: This refers to the end contribution of the smart grid big data in terms improving grid

reliability, efficiency and resiliency.

3.5.2. Communication

The importance of an efficient and reliable communication architecture in a smart grid cannot
be overemphasized [106]. There is certainly no realization of a smart grid without adequate and
efficient communication infrastructure and network. With increasing PV penetration, the need for a
highly efficient communication architecture becomes imperative. According to [107,108], the main
requirements for communication infrastructure include an adequate Quality of Service (impacted
by latency and bandwidth), interoperability, scalability, security and standardization. The massive
data intrusion as a consequence of increased PV penetration could affect the Quality of Service (QoS).
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Achieving low latency (time delay in data transmission) and adequate bandwidth while maintaining
adequate efficiency and reliability becomes a very big challenge [109,110].

3.5.3. Cybersecurity

The influx of large data across the network, as a consequence of increased PV penetration, poses
some cyber-physical challenges [111,112]. The deployment of communication infrastructures for
data transmission and acquisition creates vulnerabilities for cyber attacks. Usually, the attackers
try to take the advantage of the vulnerable parts of the communication architecture by attacking
both the measurement and control signals [113–115]. For instance, a cyber attack on smart inverter
communication and control signal on a feeder that has high level of PV penetration could lead to
voltage and frequency instability. Smart inverter settings (such as Low/High Voltage Ride Through,
Frequency Ride Through, Volt-VAR, and Frequency-Watt) remotely controlled through a Supervisory
Control and Data Acquisition System (SCADA), could be changed by an attacker, which could lead to
a cascade of stability problems in the grid [116,117].

3.6. Environmental Impacts with Increased PV Penetration

The much talked about environmental friendliness of power generation from PV doesn’t
come without some environmental impacts. These impacts could result as a consequence of the
manufacturing process of the PV panels or as a consequence of the deployment PVs for use. According
to the world energy council [118,119], the various environmental impacts of an increase in the use of
PV can be classified under the following heading.

3.6.1. Land Use

Most of the land use for PV installations falls under utility-scale PV systems. The area occupied by
a PV fleet is directly related to the size to be installed, the solar irradiace available at such location, the
site’s topography, the solar cell technology and efficiency. A study by NREL on how land was used for
PV installations in US [120] showed that, 3.6 acres/GWh/yr was used for PV installations, while the
area per unit average capacity was give as 8.9 acres/MWac. These values are based on data gathered up
to the first quarter of year 2012. Generally speaking, utility-scale PV systems need an average of 12,000
m2 to 40,000 m2 per MW [119]. Unfortunately, unlike wind systems, land used for PV installations can
hardly be used for agricultural purposes. The environmental impacts of vegetation clearing, digging,
felling of trees and other massive construction works could have some wider environmental impacts
on neighboring communities where these PV fleets are situated. The land use impact of mining of rare
earth materials (tellurium, gallium and indium) used for manufacturing solar cells also poses some
negative environmental impacts. China supplies almost 95% of the total rare earth metals used in
the world [11]. The process of mining and recycling these metals in China could cause some climatic
changes and could also be toxic to humans [121].

3.6.2. Water Usage

Although power generation from solar PVs does not directly require the use of water, the water
usage is present in the manufacturing process and the cleaning of the modules during operation and
maintenance. The typical water usage for manufacturing silicon based PV is 200 L/MWHr and an
average of 15 L/MWHr is used during maintenance and operation [122]. The water use impact of
increased use based on present studies has no significant direct impact on water quality. Only power
generation from offshore wind has a lower value (4 L/MWH) of water consumption [11].

3.6.3. Hazardous Materials

PV modules contain heavy metals such as cadmium and lead [11], which could be hazardous
when the solar panels are decommissioned. PVs made with thin-films cells contain harmful materials
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such as gallium, indium and arsenic [118]. Also, during the manufacturing process of silicon-based
PVs, silicon dust (kerf) are released, which could cause some breathing problems when inhaled.
Also for cleaning and purifying the semiconductor surface of solar cells, hazardous chemicals such as
Hydrochloric Acid, Hydrogen Fluoride, Nitric Acid, Acetone, 1,1,1-trichloroethane, and Sulfuric Acid
are involved. These chemicals are typical of use in the semiconductor industry.

3.6.4. The Use of Natural Resources

Large quantities of minerals are required during the manufacturing process of PV panels due to
the energy intensive nature of its manufacturing process [123]. These minerals include copper, iron and
aluminum. According to [124], the quantity of iron used in manufacturing PV per unit kWh is higher
than other forms of energy generation. This could lead to an enormous amount of mineral depletion.

3.6.5. Life-Cycle Emissions

The aggregate life cycle emission impact from PVs are assessed from its manufacturing process,
its transportation, its installation and up to its decommissioning. The typical value of the life-cycle
emissions from PV systems is between 30 and 80 g of Carbon (IV) Oxide [119]. The greatest emission
cycle of the PV occurs during its manufacturing. The emission levels during its manufacturing process
is dependent on the efficiency and the manufacturing technology used. Typical values of the energy
required to manufacture 1 m2 of poly-crystalline silicon PV is between 667 kWh and 2115 kWh
and for the mono-crystalline variant is between 1470 kWh and 4580 kWh [119]. According to [118],
the amount of emitted carbon (carbon footprint) as a result of solar panel manufacturing in China is
twice that of solar panels manufactured in Europe. The emissions as a result of the transportation of
solar panels, only accounts for 0.1–1% of the emission as a result of the manufacturing process [123].
Definitely, with the increase in PV installations, around the world, the impacts of these emissions
would become significant.

3.6.6. Other Impacts

Other impacts of large scale deployment of PVs include: its impact on the biodiversity of the
environment [118], its impact on visual and aesthetics of the environment [123,125], and its ecological
impacts [118].

4. Existing Solutions with Future Directions

Several solutions have been proposed in literature to address these challenges. Obviously more
work still needs to be done, especially in the future scenarios earlier mentioned. Table 1 shows a list of
acronyms based on literature and some suggested solutions.

Amongst the solutions that have been proposed and deployed over the years with suggested
future directions include:

4.1. The Use of MIR and RPFR

The minimum import relays are relays that are designed to disconnect grid-tied PV connected
systems whenever their output falls below a particular threshold value. It’s also used to trip the
grid-tied PV system from the network whenever their output goes above the 25% of the actual
service load.

Figure 9 shows a typical set up of how the MIR can be integrated with a grid-tied PV system [24].
The MIR communicates with the grid-tied inverter system to disconnect whenever the output falls
below a threshold value.

While the RPFR is designed to disconnect the grid-tied PV system when the power flow from the
utility falls to zero or changes to the opposite direction. This relay trips to prevent back feed upstream
of the feeder or to neighboring feeders [24,62,126–133].
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Table 1. Acronyms for Solutions.

MIR Minimum Import Relay
RPFR Reverse Power Flow Relay
SI Smart Inverter
SILC Smart Inverter with Load Control
SI+DLHC Smart Inverter with Dynamic Load Harmonic Control
D-SCADA Distribution Supervisory Control and Data Acquisition
AMI Advanced Metering Infrastructure
ADMS Advanced Distribution Management System
ST Smart Transformer
ARCPC Advanced Relay Communication and Protection Coordination
FRT Fault Ride Through
OER Optimal Energy Routing
IED Intelligent Electronic Device
DCESS Dynamic and Composite Energy Storage Systems
GS Geographic Smoothing
VVWO Volt-VAR/Watt Optimization
DERMS Distributed Energy Resource Management System
GIS Geographic Information System
CIS Customer Information System
STLF Short Term Load Forecasting
SE State Estimation
MDMS Meter Data Management System
FLISR Fault Location, Isolation and Service Restoration
OMS Outage Management Systems
CRM Customer Relationship Management

Figure 10 is a typical block diagram of the RPFR according to [130]. The relay constantly monitors
the direction of power flow by taking current and voltage input from the CT and PT. A reversal in the
direction of flow of power causes the relay to send a trip signal to the RPFR breaker to disconnect the
grid-tied PV system.

Figure 9. Integration of an MIR with a grid-connected PV.
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Figure 10. Basic block diagram of an RPFR.

The MIR and RPFR have a vital role to play in mitigating the effects of reverse power flow and
possible voltage instability issues.

4.2. DCI and Smart Inverter Functionalities

The DCI are inverters that can dynamically control it’s output power by ramping up or down
based on the loading condition on the feeder the grid-tied inverter is connected to [24,127]. The loading
on the feeder is constantly monitored and a control signal can be sent to the inverter to cut down or
ramp up its power output based on the load profile on the feeder. This type of inverters can help
mitigate against reverse power complementing the use of MIR and RPFR.

Also, smart inverters will have a vital role to play in the future smart smart grid. The IEEE 1547a as
amended in 2014, allowed the use of smart inverters for voltage regulation on the feeders. The recent
IEEE 1547-2018 [134] describes the various standards for inverter-based DER integration with the
grid [135]. Table 2 shows some of the essential functionalities for smart inverters according to [135].
With high PV penetrations, these functionalities of smart inverters can help mitigate many of the
challenges associated with increasing PV (both utility scale and rooftops) penetration in the smart grid.

Table 2. Smart Inverter Functionalities.

Functionalities Sub-Functionalities Specific Settings

Voltage Ride Through (VRT) Low/High VRT Voltage, Duration (time)

Frequency Ride-Through (FRT) Low/High FRT Frequency, Duration (time)

Dynamic Volt-VAR/Watt Control Volt-VAR, Volt-Watt Volt-VAR/Watt Curves

Ramping Ramp rates

Power Factor setting/control Values

Soft start Ramp rate, Time delay

Limit Real and Reactive Power Enable/Disable

Frequency-Watt Frequency-Watt Curve

Dynamic Current Support

Output Scheduling
Time of start, Time to end, Real
and Reactive power value,
operational schedule

Frequency Deviation Support

Control of Reactive Power
Dynamically.

Dynamic Load Control

Dynamic Harmonic Control

New smart inverter functionalities such as dynamic load control, dynamic harmonic control,
frequency deviation support, output scheduling and future functionalities would be required to help
support the smart grid [136–139]. More responsibilities for the grid would lie on the smart inverters.
More functionalities would also be required for future smart inverters. The major concern for power
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utility companies is usually the smart inverter setting that should be used for the several rooftop
grid-tied PV systems. Most inverters at this scale are usually set at a power factor of unity to allow for
maximum active power injection for maximum revenue to the small scale prosumers. New regulations
for rooftop PV smart inverter settings will be needed as the number of grid tied rooftop PV continues
to rise. With a well developed framework for smart inverters functionalities with high PV penetration,
the use of legacy devices such as capacitor banks, On/Off load tap changers (OLTCs) and voltage
regulators might become unnecessary for voltage optimization and control.

4.3. Dynamic and Composite Energy Storage Systems

Several articles have been published on how the use of energy storage systems can help to mitigate
the impacts of the variability in the output renewable energy sources such as the PV systems. Dynamic
energy storage is an energy storage that has some prediction, forecast, dynamic scheduling and control
capabilities [140]. This type of storage system will enable an efficient power curtailment, reliable power
smoothing and drastic reduction in the uncertainties associated with renewable energy generation.
Composite or hybrid energy storage systems that uses both battery and capacitors (such as ultra and
supercapacitors) have been proven to help mitigate both the fast ramps and slow ramps for grid-tied
PV systems. The fast response time of capacitors when properly controlled could be used to mitigate
the effects of fast ramp rates caused by fast moving clouds with PV generation [141,142].

Figure 11 shows how a typical DCESS architecture can be integrated with the smart grid.

Figure 11. Block diagram of the integration of DCESS.

4.4. Solid State Transformers

The use of solid-state transformers would be highly beneficial to the future smart grid. This is
due to its capability of interfacing as an AC and/or DC grid system and ease of dynamic control [143].
Consequently, these capabilities would allow ease of integration of distributed energy resources
(DERs), such as EVs, high penetration PVs, energy storage, etc. The SSTs have the capability to
improve power quality, protection and communication [144,145]. Figure 12 shows a conceptual design
of a typical solid state transformer with a three-phase high voltage AC input and one-phase AC voltage
output [146]. A typical SST has an AC-DC converter at its input, a DC-DC converter with a high
frequency transformer (typical 10–20 kHz) and DC-AC converter at its output.

According to Wensong Yu et al. [147], SST could provide the benefits to the future smart grid
within the following context.

1. Management of fault scenarios

• Limiting of currents especially during fault scenarios
• The ease of connecting and disconnecting of circuits attached to it

2. Power Management
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• Ease and possibility of controlling the power flow in the system and the distribution feeder’s
power factor

• The ease and flexibility of changing and controlling the customer’s and/or the feeder’s voltage.
• It can provide DC power when needed
• SSTs can be used to mitigate system harmonic which is one of the drawbacks of inverter-based

DERs
• The capacity of ride through during abnormal situations
• It can provide support for the DERs when on the islanding mode

3. Energy Management Support

• Capability to for real time energy storage monitoring
• Capability for power control and dispatch
• SST can be integrated into the mix of demand side management

The present challenges with SST applications include lower efficiency compared to the electromagnetic
induction based transformers, complexities is in protection, balancing of voltage and currents,
communication and control, and insulation for high voltage levels [148]. Active research is ongoing to
address these issues especially in application into the smart grid architecture.

Figure 12. A conceptual design of a solid state transformer [146].

4.5. Optimal Energy Routing

With the integration of several prosumers and DERs (also in a microgrids) in the mix of
power generation, the routing of these generated power to meet the load demand in the most
efficient way becomes a big challenge [149]. Several optimal energy routing algorithms and power
electronic topologies have been proposed and developed over the years. On the optimal routing
algorithm development, amongst other authors, Hong et al. proposed the use of game theory based
energy routing algorithms [150], while Kado et al. formulated the use of cost-scaling-push-relabel
approach [151]. Additionally, several topologies of power routers have been developed over the years.
Kado et al. developed a multi-port routers for AC or DC power transfer [152], Hayashi et al. developed
a digital grid router with bi-directional energy flow capabilities [153], an energy router that has the
capability of intelligently managing energy flow between microgrids [154] was developed by Liu et al.
and the use of smart AC/AC conversion systems [155] was developed by Kordonis et al. The basic
functional requirement of a very good energy routing architecture is an efficient power electronic
converter design, low latency in information exchange, highly reliable communication medium, high
level of information and data security, and intelligent grid connectivity [156–160]. The development
of an optimal and efficient energy routing algorithm would ensure an efficient energy transfer from
the generating units to the load points. These would minimize the feeder losses and also improve the
stability of the grid with a high penetration of PVs.
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4.6. Distribution Supervisory Control and Data Acquisition (D-SCADA) with Advanced Distribution
Management System (ADMS).

The ADMS is a software architecture that allows automated management of the grid infrastructure
by optimizing the distribution system, providing an outage restoration procedure that is automated.
It also has an important feature called Fault Location, Isolation and Service Restoration (FLISR),
which automatically locates a fault, isolate the faulty section (using automated switches) and restore
services to the non-faulted part of the network. With high PV penetration, installation of more rooftop
PVs, electric vehicles, integration of micro and nano grids, and other distributed energy resources
(DERs), the ADMS will allow for smooth integration and efficient management of these sources.
It will also be used as the base for implementing conservative voltage reduction and VVWO in
the grid. Figure 13 shows an ADMS architecture with its features according to reference [161,162].
This architecture features integration of several enterprising softwares through the enterprise bus.
The ADMS features, such as short term load forecasting (SLTF), distribution planning, and distribution
energy resources management systems (DERMS), would allow for ease of dynamically control of the
grid and improvement of the grid reliability and resiliency. The integration of this architecture at
the utility substations will definitely mitigate many of the challenges associated with increasing PV
penetration and other DERs [163–166]. From a utility company’s experiences [163], the major challenges
with smooth integration of this architecture with the existing grid systems include interoperability
of these enterprising softwares from the different vendors providing them, modeling of the existing
infrastructure on the softwares, validation of the solutions provided by these architectures as an
optimal one and many other unique challenges.

Figure 13. ADMS architecture and its typical features.

4.7. Advanced Relay Communication and Protection Coordination (ARCPC)

The reliability and the resilience of a smart grid architecture is dependent on the effectiveness
of its protection systems. Many authors have proposed several adaptive and intelligent protection
systems that use IEDs [167–173]. The IEDs, such as digital protective relays (DPR), have the capability
to sense voltage, current and frequency, issue control commands, and process and communicate data.
The adaptive protection scheme should be capable of some self-awareness, self-reconfiguration and
self-healing. More recently, the idea of using a multi-agent system based protection system for the
smart grid was proposed [174–177]. An agent is usually referred to as any hardware or software that
is capable of intelligent and autonomous operation based on its intended design objectives [178,179].
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This multi-agent architecture can be easily deployed for optimal protection coordination. The protection
architecture agents can be broken into the relay agent, the DER agent and the equipment agent. These
agents would be linked together with a communication infrastructure [174–177,180,181]. Overall, more
adaptive and intelligent techniques of protection coordination need to be developed to cope with the
future dynamic nature of the smart grid with increased PV penetration.

4.8. Geographic Smoothing and Optimal Location of PV Systems

Fleet management with optimal sizing and siting of PV systems would help mitigate against some
challenges as a consequence of the intermittent nature of PV [182–188]. Several factors such as feeder
losses, voltage profile, cost, line ampacity and the existence of previous PV installations are some of
the primary factors to be considered when siting and sizing a PV on an existing feeder. Depending
on the correlation in the Global Horizontal Irradiance (GHI) of different locations, aggregating PV
systems could potentially reduce the variability (and ramp rates) in the output of the aggregated
PV systems. For sites that have very small correlation values, the aggregation of PV in these areas
could lead to a large reduction in variability of the aggregated PV compared to each of the PV site.
Aggregating PV sites with very strong correlation in GHI will produce less reduction in variability
in the aggregated PV site. This is often referred to as geographical smoothing of PV power output.
This is mostly applicable to utility scale PV systems. Several case studies have presented the effects
and benefits of PV aggregation [189–194].

The optimal location of PV systems along a feeder with the objective of minimizing loses, reducing
the possibility of reverse power flow, and preventing over-voltage could be of immense benefit with
higher levels of PV penetration.

4.9. Optimal Mix and Dispatch of Renewable Energy Sources

Being the two fastest growing sources of power generation from renewable energy sources,
several studies have shown the benefits (the complimentary nature of solar irradiance and wind
speed [195–198]) of hybrid generation from a mix of renewable energy sources such as wind and PV
systems [199].

Figure 14. Basic block diagram of an hybrid DER generation.

Other distributed energy resources (DERs), such as battery energy storage [200] and most recently
tidal [201], have been proposed as part of a composite hybrid system to address the challenges of
power generation from PV systems alone. Several techniques and algorithms have been proposed to
determine the optimal mix and capacity dispatch using a hybrid of these renewable energy resources.
For optimal sizing of a hybrid of Wind+PV+battery, Akram et al. and Singh et al. proposed the use of
iterative search algorithms [200] and particle swarm optimization, respectively. Authors of [201] also
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proposed the use of the crow search algorithm (CSA) for optimal sizing of PV+Wind+Tidal+Battery
with its economic analysis. Figure 14 shows a block diagram with the integration of wind systems
and other DERs with the PV system. Each of these DERs would have its own control mechanisms for
optimal dispatch of its generation.

From the dispatch, scheduling and economic point of view, necessary algorithms can be developed
to determine what amount (forecasting) of these sources would be available at a given point in time
as well as the price signals (economics) to be used to determine the optimal dispatch of these hybrid
sources [202,203].

4.10. Demand Response Management

To ensure grid (nano-grids, micro or the macro smart grid) stability, which could be threatened
with high PV penetration, power generation must be able to meet the load demand plus the losses
associated with transferring the power from the point of generation to the load. Conventionally,
the generated power is usually controlled to meet the load demand at all times. The use of
demand response management (DRM) techniques allow for a dynamic control (such as load
shedding/curtailing, load shifting) of the load to match the energy generation in real time. The benefits
of DRM include a reduction in power generation and costs to meet the load demand, reduction in
variation of prices [204], increased reliability of the system [205], improved management of system
congestion [206] and improvement of the overall system security [207]. The use of DRM algorithms
provide an excellent way of overcoming the variable nature of power generation from PV systems by
dynamically controlling the load to match the power generation. Some of the proposed algorithms for
DRM include:

• The use of large time constant loads to create a virtual energy storage which is used to smoothen
the intermittent output of PVs through DRMs [208].

• An IoT-based, real time smart-direct load control (S-DLC) was proposed by [209]. The algorithm
creates a schedule for the customer loads, then controls and optimize the loads (which already
has an intelligent electronic devices (IED) embedded) through a load shedding and forecasting
algorithm.

• Karapetyan et al. proposed an event-based DRM using the greedy approach for customer load
curtailment. An integer programing problem was formulated which estimated the amount of
loads to be curtailed while using the maximum available generated power [210].

• Sivaneasan et al. [211] proposed a DRM algorithm that controls the air-conditioning and ventilation
systems in a building. Whenever there is a drop in PV power generation, the developed systems
adjust the air conditioning system by putting into consideration the well-being of the occupants of
the building. This system incorporates a battery storage management system and a load shedding
algorithms that is based on the level of priority of the loads.

The use of state-of-the-art DRM algorithms would be a vital tool in addressing the intermittent
nature of power generation from photovoltaic systems.

4.11. Big Data Solutions

The characteristics (volume, heterogeneity, speed and veracity) of the data involved in operating
a smart grid with high PV penetration constitutes a big data challenge [212]. Solutions to big data
challenges needs a data storages with high capacity and very high processing speed. Some of the
available solutions that can be leveraged on to solve the big data challenges are highlighted below.

4.11.1. Data Processing Frameworks

As mentioned earlier, the data volume necessitates the use of some big data processing framework.
Examples of existing data processing frameworks that can be used include: Flink, Spark, Storm,
and Hadoop [213].



Energies 2018, 11, 1782 18 of 32

4.11.2. Cloud Computing Frameworks

The use of cloud computing in big data allows utility companies to achieve some level of flexibility
and efficiency in managing the their data. Some available cloud service models that can be leveraged
in a smart grid with high level of PV penetration include [214–217]:

• Software as a Service (SaaS)
• Infrastructure as a Service (IaaS)
• Platform as a Service (PaaS)
• Data as a Service (DaaS)
• Communication as a service (CaaS)
• Monitoring as a Service (MaaS)

4.11.3. Post-Cloud Computing Networks

To address the central architecture-based cloud computing frameworks (which is usually
plagued by congestion, latency and reduced Quality of Service (Qos)), several other post-cloud
computing paradigms have been proposed [218]. These include, Fog Computing [218,219], Mobile
Edge Computing (MEC), and Dew Computing [219,220]. These new post-cloud computing paradigms
ensure improved security, reduction in bandwidth, better scalability, improved visibility and decreased
latency [218,221]. These computing paradigms can be leveraged on to address the computing
challenges that will arise with increased penetration of PVs in the smart grid.

Other solutions that have been proposed to solve the challenges that emanates from big data include
the use of game theory [222–224], and machine learning algorithms, such as deep learning [225–228],
selective encryption [229–231], and defense-in-depth (DiD) [232,233].

4.12. The Use of Artificial Intelligence

The deployment of artificial intelligence (AI) could help to better integrate new PV and the
existing ones with the grid. AI has the ability to use machine learning algorithms to analyze new and
historical data, carry out some predictions and forecasting, execute some control operations and make
some intelligent decisions. The use of AI can be deployed in weather forecasting (which includes
irradiance, temperature, wind speed and cloud speed), determining the optimal size of PV systems,
smart inverter controls, tracking of PV’s maximum power point, system optimization and control,
accurate estimation and identification of solar cell parameters and models, and diagnosing faults in PV
systems [234–236]. AI uses machine learning algorithms, which is usually classified into Supervised
and Unsupervised learning.

Examples of supervised learning techniques includes [237]

• Random Forest
• Deep Learning
• Generalized Linear Models (GLM)
• Decision Trees
• Gradient Boosting Machine (GBM)

Unsupervised learning techniques include:

• Principal Components Analysis (or Dimension Reduction)
• Anomaly Detection
• Clustering

According to [234], AI algorithms that have been applied to PV systems include: Neural Networks
(NN), Fuzzy logic (FL), Simulated Annealing (SA), Genetic Algorithm (GA), Ant colony (ACO),
Particle Swarm Optimization (PSO),Adaptive-Neuron Fuzzy Inference Systems (ANFIS), GA-fuzzy,
and NN-fuzzy.
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5. Summary of Present and Future Challenges with Suggested Combinatorial Solutions and
Future Direction

With the present PV penetration level, many challenges with PV penetration are incipient as
mentioned earlier. With the drive toward achieving a higher levels of PV penetration, many of these
challenges with the future scenarios earlier mentioned would become more aggravated. Table 3
highlights these problems and the combination of solutions that could address these challenges based
on the solutions highlighted in Section 4.

Table 3. PV penetration problems and suggested future solutions.

Challenges Existing (with Present
Penetration Levels)

Future (with Smart Cities,
PHEVs, Solar Eclipse,
Transactive Energy, Big
Data, Cybersecurity etc.)

Suggested Future Solutions

Reverse Power flow

incipient problem
depending on the point of
interconnection with
the feeder.

Increase expected. Reduced
the choice of point of
interconnection.

Minimum load ensured
on feeders. MIR, RPFR. SILC.
SI+D-SCADA, AMI

Voltage instability issues OLTC and DVRs has
been effective. Increase expected.

STs. DCESS, OLTC.
STATCOMs. DVRs,
SI+D-SCADA with FRT. GS
with PV fleet management.

Complexity in
protection coordination

No major issues with
Coordination in relays,
sectionalizers, fuses,
reclosers.

Increased bidirectional flow
of current and fault current
levels, line to ground
voltage increase due to
more single phase
prosumers, possible
desensitization the
substation relays, unwanted
blowing of fuses,
maloperation of reclosers
and sectionalizers.

Advance short circuit analysis
with high PV penetration. SI
with fault current monitoring
and control capabilities.
ARCPC

Power factor problems No major concerns. Increase expected.

Use of SI with dynamic reactive
power control for both utilities
and prosumers. SI+D-SCADA,
OER.

Harmonics No major concerns. Increase expected.
All SI compliance with UL 1741.
SI+DLHC capabilities. Use of
STATCOMs

Frequency Instability
No major concerns.
Germany’s ’50.2 Hz’
problem .

Increase expected.
GS with PV aggregation for
utility-scale PV systems.DESS.
SI+FRT, OER

Feeder losses Slight increase depending
on POI Possible future increase.

Robust optimal PV placement
algorithms, OER on the
distribution feeders.

Thermal limits of
the grid No significant effects Increase expected.

UL 1741 compliance for all SI.
Optimal placement of
utility-scale and small scale
aggregated PV system, OER

Security of supply No major issue. Threatened.

Accurate estimation methods of
prediction (of security of
supply) should include future
market analysis consideration
of the intermittent nature of PV
system as well as the
development of other
dispatchable energy sources.
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Table 3. Cont.

Challenges Existing (with Present
Penetration Levels)

Future (with Smart Cities,
PHEVs, Solar Eclipse,
Transactive Energy, Big
Data, Cybersecurity etc.)

Suggested Future Solutions

Communication within
Distributed Energy

Resources (DER) and
substation,

Cybersecurity

No communication and
control link. IEEE 2030
standard has not been
fully developed.

Reliable and well defined
communication and control
protocols needed.
Interoperability of DERs in
a TE environment.

IEDs .Robust IEEE 2030
standards and adoption by all
PV systems. Fast computing
and communication
architecture.

Dynamic modeling of
the high penetration PV

GIS-based Distribution
Management Systems
(DMS) models PV systems
as a negative load.

System modeling with
PHEVs, and proliferation of
prosumers would be
required. Energy routing
modeling for IoT enabled
TE would be required. More
detailed studies solar
eclipse impacts would
be needed.

Dynamic models PV systems
should be developed for
GIS-based DMS and GIS-based
Energy Management Systems
(EMS) for remote monitoring
and control.

Forecasting

Forecasting always have
some level of uncertainty.
The level of accuracy is
still low

Accuracy will be key to
adequate planning, unit
commitment and dispatch.

Hybrid-forecasting
(nowcasting+forecasting).
More accurate prediction
models using multiple
forecasting methods.

Dispatch and
Scheduling problem No major issues reported

Increase on PV penetration
in transactive environment
will require the
implementation of optimal
power flow and optimal
dispatch with high PV
penetration mandatory

Optimal Smart Inverter
Dispatch (OSID). Optimal set
point for storage systems.
Mitigation techniques for
forecast and communication
errors in (OSID)

There is an obvious need for a proactive approach towards developing more advanced and smart
protection systems and integrated technology that allows ease of DER penetration and control for
improved reliability and resilience of the grid.

6. Conclusions

This paper presented the various challenges with PV penetrated network and classified them
based on their areas of impact. With the inevitable future increase in PV penetration, this paper also
took an extensive look at different future scenarios and their impacts with higher levels PV penetration
in the network. The present technical solutions with the existing penetration was also presented. Many
of these existing solutions need further development with some future research direction indicated in
this survey. This survey showed that the technical, operational and environmental challenges with
PV integrated network are still incipient and would become more prominent with increased level of
penetration, especially within the context of the future scenarios earlier discussed.
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