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Abstract Synchrophasor devices guarantee situation

awareness for real-time monitoring and operational visi-

bility of smart grid. With their widespread implementation,

significant challenges have emerged, especially in com-

munication, data quality and cybersecurity. The existing

literature treats these challenges as separate problems,

when in reality, they have a complex interplay. This paper

conducts a comprehensive review of quality and cyberse-

curity challenges for synchrophasors, and identifies the

interdependencies between them. It also summarizes dif-

ferent methods used to evaluate the dependency and sur-

veys how quality checking methods can be used to detect

potential cyberattacks. This paper serves as a starting point

for researchers entering the fields of synchrophasor data

analytics and security.
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1 Introduction

Smart grid has complex dependencies between physical

and cyber realms [1–4]. This has been demonstrated by

recent attacks on smart grid which is summarized in

Table 1 [5–10]. These attacks exploited a limited visibility

of the system and inadequate support from reliability

coordinators [11–22]. Wide-area measurement systems

(WAMS) increase the situation awareness (SA) for oper-

ators [23–25]. WAMS devices that are part of the wide area

monitoring, protection, automation and control include

phasor measurement units (PMUs) at transmission, fre-

quency disturbance recorders (FDRs) at low-voltage dis-

tribution and micro-PMUs (l-PMUs) for distributed

renewables, called synchrophasors [26–35].

Significant challenges to the implementation of syn-

chrophasors have emerged in communication, data quality

and cybersecurity. The existing communication infras-

tructure is slow, expensive and inflexible. To leverage SA

and support timeliness, adequate quality checking methods

must be in-place at the phasor data concentrators (PDCs)

which aggregate and process raw data and flag corrupt data.

Due to their ubiquity, synchrophasors have an increased

attack surface. The applications and challenges of syn-

chrophasors are wellresearched [36–41]. However, the

challenges of data quality and cybersecurity are considered

one independent of the other, when in reality, they are

interdependent [42–69]. Further, the literature does not

leverage the knowledge of one challenge to address the

other. For example, studying the changes to data quality

can be key to potentially identify an underlying attack

vector or an unexploited vulnerability.

The main contributions of this paper are: � maps the

dependencies between data quality and cybersecurity chal-

lenges of synchrophasors;` reviews the methods to evaluate
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the challenges; and ´ surveys how data quality checking

methods can leverage their observations to detect issues

related to security. The paper also provides a high-level

overviewof synchrophasors, their standards, key applications,

and challenges [70–73]. It is key to know that poor quality can

be due to device errors or communication challenges like

congestion and packet collision. Similarly, all cyber-attacks

do not impact the data, although reduction in quality is one of

the biggest observable consequences of a successful attack. A

layout of WAMS comprising synchrophasors is shown in

Fig. 1. This paper explores the challenges for PMUs at

transmission and FDRs at distribution level.

This survey paper considers data quality and cyberse-

curity as challenges, where each has different issues. Issues

are the ways in which the particular challenge manifests

when observed. Figure 2 maps the challenges to their

corresponding issues. The challenge of quality manifests in

three ways: noise, outliers and missingness. Noise can be

due to logical inconsistencies in data values or attributes

while outliers result from poor integrity and origination.

Missing data is a direct consequence of poor completeness

and availability. Accuracy is impacted by noise, outliers as

well as missingness while plausibility is a characteristic

impacted by noise and outliers. These characteristics are

discussed in Section 3.1. Cybersecurity manifests as delay/

Table 1 Summary of the recent cyberattacks on smart grid impacting data quality

Source of attack (Year) Target of attack Data quality

characteristic

impacted

Cybersecurity

characteristic

impacted

Attack specifics

Vulnerability in network

firewall (2001)

California ISO (CAISO) web

servers

Consistency, accuracy Integrity Poor security configuration

during planned maintenance

Stuxnet worm (2010) Programmable logic

controllers (PLCs) at

SCADA

Accuracy,

consistency,

plausibility

Integrity,

availability

Exploits zero-day vulnerabilities

of PLCs

BlackEnergy (2011) Human-machine interface of

utility grid control systems

Plausibility, origin,

accuracy,

consistency

Confidentiality,

integrity,

availability

General electric’s human

machine interface (HMI)

targeted

Remote access Trojan;

watering-hole attack

(2014)

Industrial control system

(ICS)/SCADA

Plausibility, origin,

accuracy,

consistency

Confidentiality,

integrity,

availability

Conducted by dragonfly,

energetic bear

Trojan.Laziok

reconnaissance malware

(2015)

Energy companies Origin, plausibility Confidentiality Gathered information from

compromised devices

BlackEnergy3 (2015) Ukrainian grid control center Plausibility, origin,

accuracy,

consistency

Confidentiality,

integrity,

availability

Lack of SA left 220000?

customers without power

WannaCry ransomware

cryptoworm (2017)

Computers running microsoft

Windows operating system

Availability, origin Availability Used EternalBlue, a

vulnerability in older

Windows systems

SCADA, Control center

Super PDC
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PMU PMU PMU PMU
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Fig. 1 Layout of smart grid WAMS comprising PMUs, l-PMUs,

FDRs and PDCs
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loss, manipulation or theft. While a delay/loss corresponds

to a packet delay or drop due to congestion, timeout, buffer

fullness or an intentional attack that affects availability,

manipulation deals with attacks that alter the information,

thereby impacting integrity. Theft captures attacks which

compromise the confidentiality of data such as snooping,

spoofing or espionage. These attacks occur at different

levels of the synchrophasor hierarchy: Device corresponds

to the edge devices like PMUs, FDRs, or l-PMUs, while

Aggregator implies Local PDCs or SuperPDCs. Commu-

nication refers to the synchrophasor network while Appli-

cation contains the different power system applications that

use synchrophasor data.

The rest of the paper is organized as follows. Section 2

summarizes the architecture, major applications and key

challenges of synchrophasors. The characteristics are descri-

bed in Section 3, and their interdependencies mapped in

Section 4. While evaluation methods for data quality and

cybersecurity are discussed in Section 4.1, Section 4.2 sur-

veys methods which use data quality characteristics to detect

potential cyber-attacks. Section 5 highlights future directions

of research in synchrophasor data analytics and cybersecurity.

2 Architecture, applications, challenges

Synchrophasors can be standalone devices with dedi-

cated purposes, or be a part of a larger system like the

substations, depending on various functional and opera-

tional requirements. With increased penetration of renew-

ables and smart loads, synchrophasors are used at

distribution transformers and points of common coupling to

study frequency disturbances and harmonics. The archi-

tecture of synchrophasor devices are summarized at the

device and network levels below.

1) PMU device: It comprises current transformers (CTs)

and potential transformers (PTs) that measure current

and voltage magnitudes which are then converted to

digital data, a microprocessor module that compiles

these values, computes phasors, and synchronizes them

with the coordinated universal time (UTC) standard

reference used by global positioning system (GPS)

receivers that acquire a time-lag based on the atomic

clock of GPS satellites [23, 74–77]. They measure local

frequency and its rate of change, and can record

individual phase voltage and current along with har-

monics, negative and zero sequence values [78]. The

information paints a dynamic picture of the grid at a

given time. PMUs and PDCs transmit measured data as

frames [79]. A 16-bit cyclic redundancy check ensures

data integrity. PDCs equipped with logging functional-

ity use comma separated values or transient data

exchange for data logs, and common format for event

data exchange for event logs [80, 81]. The data transfer

rate of PMUs, which determine the message processing

delays and network latencies, depend greatly on the

timing requirements of applications.

2) PMU network: If there are multiple PMUs in a

substation, Local PDCs aggregate site-level data and

then transmit to a SuperPDC. PDCs conduct various

data quality checks and set flags according to the issues

encountered, log performance, validate, transform,

scale and normalize data, and convert between protocols

[82]. There is typically a direct interface between PDC

and the utility’s SCADAor energymanagement system.

PDCs can be deployed as standalone devices or

integrated with other systems in the grid.

3) FDR device: The Oak Ridge National Laboratory and

the University of Tennessee Knoxville have been

leading the FNET/GridEye project since 2004. FDRs

have been installed and managed to capture dynamic

behaviors of the grid. Although FDRs are essentially

PMUs, they are connected at 120 V, and hence incur

lower installation costs than traditional PMUs do [83].

FDRs are largely deployed at renewable integration

zones of the grid, and measure nearly 1440 samples

per second with a hardware accuracy of ±0.5 mHz

while PMUs measure between 10 and 240 samples per

second and use GPS receivers that have 1ls accuracy
for synchronization [84–87]. Given the availability of

an extensive discussion of the architecture by the

author of [88, 89], it is beyond the scope of this paper.

4) FDR network: FDRs use the internet to send data

directly to the central servers for analytics and can

provide information on transients, load shedding,

breaker reclosing and the switching operations of

capacitor banks and load tap changers [87]. Unlike

PMUs, FDRs can be installed at buildings and offices.

5) Synchrophasor standards: Multiple standards exist for

PMU data measurement, transfer and communication,

proposed by IEEE, the National Institute of Standards

& Technology (NIST), the North American Electric

Reliability Commission (NERC) and the International

Electrotechnical Commission (IEC) [90–97]. Due to

multiple specifications and guidelines, there are pos-

sible contradictions in recommendations [70–73, 98].

A North American SynchroPhasor Initiative (NASPI)

report in early 2016 identified the need for standard-

izing definitions related to synchrophasor data quality

and availability by establishing the PMU applications

requirements task force (PARTF) [99]. IEEE standard

C37.X deals with WAMS, specifically PMUs

[82, 100, 101]. These standards are summarized in

Table 2 with their core contributions highlighted. A
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more comprehensive review of the synchrophasor

standards is documented in [102].

6) Applications: Synchrophasors streamline security, reli-

ability and stability of power systems. They have online

and offline applications [103]. Online applications of

PMUs include enhancing real-time SA, analyzing faults

and disturbances, detecting and appraising oscillations

and harmonics that impact power quality, and improv-

ing accuracy and reducing computational time of state

estimation. Offline applications include congestion

management, providing effective protection schemes,

benchmarking, system restoration, overloadmonitoring

and dynamic rating, validating the network model of

SCADA, and improving overall power quality

[25, 104, 105]. Real-time (online) applications of FDRs

include frequency monitoring interface integrated with

command and control centers in the future for power

system health diagnosis to prevent cascading failures,

and event trigger module that detects and notifies the

mismatch between generation and load caused by

frequency variations. Offline applications include event

visualization that renders the data read from the even

data files [106].

7) Challenges: One of the major drawbacks of synchropha-

sors is the lack of transmission protocol, which makes

them vulnerable to spoofing attacks [26]. The existing

architecture is not scalable since it entails an initially high

investment. NASPI’s research initiative task force

(RITT) emphasizes optimal placement as a significant

challenge but also one dependent on the nature of

applications the utility intends to use them for [18]. The

literature hasmultiplemodels including but not limited to

genetic algorithm, simulated annealing, Tabu search,

Madtharads method, particle swarm optimization, artifi-

cial neural networks, binary search and binary integer

programming to address this challenge

[27, 28, 31–34, 107, 108]. More recently, managing

and analyzing large volumes of synchrophasor data has

become increasingly challenging. Lack of standardized

data management solutions for smart grid has only made

this problem more challenging. The ubiquitous presence

of these devices has expanded their attack surface,

making them vulnerable to different types of attacks.

These two challenges are elaborated in the following

section since they percolate to applications that directly

operate upon the streaming data subject to minimal

processing owing to timeliness requirements.

3 Data quality and cybersecurity challenges
in synchrophasors

Due to their wide-ranging communication and automa-

tion capabilities, the challenges of synchrophasor data

quality and cybersecurity have gained prominence.

Table 2 Various standards and guidelines for synchrophasors

Body Standard Core contribution

IEEE 1344-1995 Original parameter definitions for synchrophasors

C37.118-2005 Improved message formats, inclusion of time quality, total vector error (TVE)

C37.239-2010 PMU/PDC event logging

1711-2010 Serial SCADA protection protocol for substation serial link cybersecurity

C37.118.1-2011 PMU measurement provisions, performance requirements

C37.118.2-2011 Synchrophasor data transfer requirements

C37.238-2011 Common profile for applying precision time protocol (PTP) using Ethernet

C37.242-2013 Synchronization, calibration, testing and installation of PMUs for PC

C37.244-2013 PDC functions and requirements for PC and monitoring

C37.111-2013 PMU/PDC data logging using COMFEDE

1686-2013 Procuring, installing and commissioning IED cybersecurity

C37.240-2014 Sound engineering practices for high cybersecurity of substation APC

IEC 61850 Interoperable and adaptable architectures to substation automation

61850-90-5 Requirements for data exchange between PMUs, PDCs, PCs and control center

62351-1,2 Security threats and vulnerabilities in smart grid devices

62351-6 Prescribes digital signature using asymmetric cryptography for sending PMU data

NERC CIP 002-009 Series of standards to ensure enterprise, field and personnel security

NIST NISTIR 7628 Provides guidelines for smart grid cybersecurity (including WAMS)
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3.1 Data quality challenges

NERC’s real-time tools best practices task force

(RTBPTF) and NASPI’s PARTF impose requirements to

ensure synchrophasor data quality [42, 109]. Data quality

can be contextualized in different ways, depending on the

needs of the concerned domain. For instance, data quality

requirements of a smart meter recording energy con-

sumption might differ from those of a net meter at a solar

photovoltaic (PV) power plant. NASPI contextualizes

synchrophasor data quality to determine ‘‘fitness of use’’ in

terms of accuracy and lineage for static data points; lin-

eage, completeness and logical consistency for static

datasets; and availability, timeliness and origination for

streams of data points [42].

There could be different causes for poor data quality as

follow.

1) Device: poor calibration of device, biases due to CT,

PT; erroneous filter design, poor synchronization of

timing measurements, and issues due to measurement

channel;

2) Communication: latency exceeding stipulated limits,

network congestion, signal interferences and failure of

communication nodes;

3) Aggregator: data transformation resulting in errors,

delayed arrival of packets dropped due to time-limit

exceeding, and unwanted duplication or corruption of

data during computations;

4) Application: storage and maintenance issues, insuffi-

cient training size, erroneous manipulations to the data

and poor association of context.

Although data quality requirements vary with applica-

tions, they have been extensively documented

[42, 52, 102, 109]. The existing literature on synchrophasor

data quality is summarized in Table 3.

1) Completeness: focuses on the gaps between different

values, accounts for missing values [42]. The attributes

of completeness defined at device and aggregator-levels

are: gap rate—number of gaps in data per unit time;

mean gap size—mean of the length of known gaps; and

largest known gap—length of the largest known gap

among the different gaps. While completeness is

impacted by device malfunction, packet drops and

communication link failure, the literature does not rec-

ognize the possibility of an attack behind such causes.

2) Accuracy: can be of the value or attribute, primarily

measured in total vector error (TVE), which according

to IEEE standard C37.118, is the vector difference

between the measured and expected phasor value

(magnitude, angle and frequency). Accuracy is cate-

gorized into that of: data values—impacted by factors

like the difference between expected and observed

signals or the introduction of noise to the data within

the synchrophasor; and data attributes—affected by

factors like accuracy of the measured timestamp,

agreement between encoded and actual location coor-

dinates of the device, and alignment of the location

recorded in the power system topology with its actual

location [46].

3) Plausibility and Availability: Measurement specifiers

are the attributes of data which describe whether the

process of measuring some phenomenon of the power

system (observed value) and calculating its value

(expected value) are documented effectively in terms

of standard units to a given precision and are within a

stated confidence interval [46, 48]. These specifiers

have decisive sub-attributes influencing the qualitative

value of data: data representing the measurement of

quality or condition of the grid, and data represented in

the form of SI units up to 3 decimal places with a

confidence interval included.

Network availability plays an important role in

streaming data [49], and in-turn affects data availabil-

ity. In case of high network latency, the incoming data

streams from different synchrophasors get delayed or

lost, causing applications to perceive them as missing

or incomplete. Hence, network availability can be

considered an indirect attribute affecting quality. This

can be mitigated if the overlying applications are

programmed to account for the delays, or if a more

lenient waiting time limit is set. However, the second

solution is dependent on the kind of applications the

synchrophasors cater to. The latency requirements for

synchrophasors recommended by the standards are

very stringent.

4) Origination: is the source from which the data is

measured. Its trustworthiness is associated with the

background and source. Its attributes are as follow. �

Point of origin: the class of device from where the data

originated (measurement (M) or performance (P) for

PMUs), the standard followed by the device, and any

data manipulation or standardization techniques

through which the data passes [42, 118]; ` Coverage:

physical location of the device based on its geospatial

or electrical topology location [44, 45]; ´ Transfor-

mation applied to the data at the device, aggregator or

application level.

5) Consistency: determines how agreeable the data is

with the overall structure of its type. Incompatibility of

attributes in terms of measurement rates or header

labeling between datasets results in outliers, leading to

an inconsistent result from an application. The

attributes of consistency are as follow. � Header

frame consistency: consistency of the header frame of
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the device. This could be categorized into: persistence

of PMU header that states whether the PMU header

structure is consistent over time, and persistence of

PDC header that states whether the PDC header

structure is consistent over time. ` Data frame

consistency: consistency of data frames of the device.

This could be categorized into: persistence of PMU

data frame that states whether the PMU data frame

structure is consistent over time, and persistence of the

PDC data frame that states whether the PDC data

frame structure is consistent over time. ´ Order

consistency of data frames: whether the order in which

the data frames are recorded is consistent in the

device. ˆ Consistency in compliance to standards

recommended for PMU and all the devices associated

with it. ˜ Consistency of reporting rate: whether data

reporting rate is consistent across all devices.

Emerging research in this area has lately focused on

determining solutions for ensuring data quality. These

solutions include using omnidirectional antennas to

Table 3 Summary of existing research in synchrophasor data quality challenges and solutions

Attribute Challenges Solutions

Completeness (Device,

Aggregator) [42, 50, 110]

PMU/PDC device damage

Faulty PMU-PDC communication

Network error

Database storage error

Data missing for failing to comply with latency and QoS

requirements

Acquiring better management techniques

Use of TCP protocol to re-transmit the lost data

packets at the cost of timeliness

Adjusting the synchrophasor frame rate by

increasing the wait time at PDC

Measurement accuracy (Device)

[42, 43, 110–113]

Expected signal differs from measured signal due to

harmonic interference

Introduction of noise to data

Improving phase error using filtering

techniques

NIST calibration per Standard C37.118-2005

Omnidirectional antennas

Context-based reconstruction of missing data

Network time protocol (NTP), e-Loran and

chip scale atomic clock (CSAC)

Attribute accuracy (Device,

Aggregator, Communication)

[42, 44]

Measured vs actual timestamp discrepancy due to

satellite timing error; disagreement between encoded

and actual location of PMU

Development of linear state estimation tools

Avoiding timestamp discrepancy by

modifying

real-time clock element

Using OMP-based identification, BB algorithm

to solve PMU location discrepancies

Plausibility and availability

(Communication, Application)

[47–49, 51, 114, 115]

Impact of measurement system on individual data points

Data inaccessibility due to high network

latency or device failure

Delayed data arrival due to increased

routing traffic

Use of electrical data recorder (EDR) tools for

capturing high-rate time series data, data

storage and analysis

A more lenient time limit could be set for

noncritical application usage

Latency-aware application design

Origination (Device, Aggregator,

Communication, Application)

[42, 53, 116, 117]

Poor standard interpretation, implementation

Misalignment, erroneous compression

Latency, loss of communication nodes

Data corruption due to delivery time of

PDC exceeding permissible slot

Network unavailability to process incoming data streams

Redundancy in communication by using

wireless and wired connections

Lagrange interpolating polynomial method

Data substitution, imputation, interpolation and

extrapolation

Stochastic forecasting with prediction error

minimization (PEM)

Logical consistency (Aggregator,

Communication) [42]

Data transmitted contains no headers

Sampling rate of data changed at PMU without being

adjusted at PDC

Data duplication while processing

Data from different PMUs with incorrect timestamps

Logical consistency can be ensured by

maintaining the PMU registries and data

protocols
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improve GPS availability, context-aware determina-

tion of missing data streams using accurate timing

information, network time protocol (NTP) and asso-

ciated chip scale atomic clocks (CSACs) as backups

for synchronization when GPS fails, imputation,

interpolation and extrapolation, stochastic forecasting

with prediction error minimization (PEM) and data

substitution [52].

6) Evaluation of quality: Methods to evaluate quality is

discussed in Section 4.1. The approach for perfor-

mance evaluation is to first study the impacts of device

calibration and network conditions on quality, then

examine how poor quality reduces the application

performance [42]. Two effective methods are pro-

posed to evaluate the impact of quality on perfor-

mance: � Benchmarking that tests an application

multiple times with numerous erroneous datasets in

contrast to those with no known errors, and `

Standardization that documents, for each application,

the level of tolerable errors.

3.2 Cybersecurity challenges

Synchrophasors cater to applications like state estima-

tion, contingency analysis and optimal power flow that

need real-time high-resolution data measurement, com-

munication and analytics [119]. Therefore, a successful

attack on these devices might cause erroneous SA or cas-

cading failures [56, 120]. Yet, many industrial organiza-

tions do not consider synchrophasors as critical cyber

assets. Recent cyberattacks on the smart grid in Table 1

mostly used powerful malware like worms, viruses or

Trojan horse, but a few attacks like the one on the Pacific

Gas & Electric transmission substation relied on physical

means. These attacks jeopardized not just the availability

of power but also that of control data (information). In

Table 4, cybersecurity of synchrophasors are categorized

into: � Device, Aggregator; ` Communication; and ´

Control center application.

1) Device, Aggregator: NASPI network (NASPInet) is

logically capable of integrating WAMS across multi-

ple geographically distant organizations using phasor

gateways (PGWs). The attacks at this level compro-

mise data integrity, targeting devices from individual

PMUs to PDCs, SuperPDCs or even PGWs. Some

attacks include: � tampering the signal measurement

units of devices through interference; ` illicitly

changing the calibration of devices to report erroneous

readings; ´ forging data to reflect wrong measure-

ments; and ˆ GPS spoofing by broadcasting fabricated

Table 4 Summary of existing research in synchrophasor cybersecurity challenges and solutions

Level Challenges Solutions

Device, Aggregator

[54, 55, 97, 102, 110, 121]

Device damage

Device calibration

tampering

Forging PMU data

GPS spoofing

Multi-alteration technique to trace adversary in event of GPS spoofing

Visible GPS satellite prediction

Anomaly between expected and measured GPS signals

Using SSL/TLS or IPSec to encrypt data before transmission

Using state estimation technique to mitigate device calibration and

tampering

Rigorous penetration testing prior to installation

Communication

[57, 61, 62, 66, 112–115, 122]

Denial of service

Man-in-the-middle

False data injection

Snooping attack

Delay attack

Airgapping PMU network

Filtering routers, disabling IP broadcasts, applying security patches,

disabling unused ports

Server authentication by clients before establishing connection

Use of time-series state estimation

Cryptographic methods like AES, DES

Mutual authentication

Cyber trust model with blockchains

NASPInet hub-spoke model

Optimal key generation and distribution

Application [63–65, 116, 117] Phishing and social

engineering

APT and insider threats

Replay attacks

Authentication, authorization and accounting (AAA)

Use of secure data transfer protocol to prevent replay attack
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signals to the receiver to yield erroneous synchro-

nization of phasors computed, modifying satellite

position, or replaying legitimate GPS signals at later

timestamps [54].

GPS spoofing can be mitigated by enabling the

receiver to predict visible GPS satellites at a given

position and time instant and use the coarse/acquisi-

tion (C/A) code from those satellites. Another strategy

compares the measured GPS signal to the estimated

signal and computes the anomaly error which must

have an accuracy of B 40 ns for nearly 95% of the

values according to IEEE C37.118 [44]. Synchropha-

sors must be subject to rigorous testing before instal-

lation. Some methods include port scans, device

security feature robustness, network congestion test-

ing, denial of service testing, network traffic sniffing

and disclosure testing [55]. These tests should be

periodically conducted by certified white hat penetra-

tion testers after installation. Regular patches and

configuration updates must be made down to the end-

device level.

2) Communication: Synchrophasors support bidirectional

communication channels, where data measurements

flow from devices to the control center while control

signals flow the other way. The vulnerabilities of the

protocols used by the devices also contribute to the

overall security. Attacks on communication channels

compromise integrity, availability and confidentiality.

Some attacks include: � Denial of service (DoS) by

overwhelming PMUs, PDCs or other aggregation

devices higher in the hierarchy with bogus frames so

that legitimate frames are lost, delayed, denied or

dropped; ` Man-in-the-middle (MITM) attacks by a

malicious entity posing itself as PDC (to PMU) or

PGW (to PDC) and sending malicious commands that

causes PMUs/PDCs to behave in an abnormal manner

that triggers failures; ´ False data injection (FDI) by

intercepting frames over the channel, altering or

replacing them with malicious information that then

gets propagated to higher levels of the WAMS; ˆ

Snooping by the attacker eavesdropping on the chan-

nel for incoming or outgoing frames, typically not

modifying or stealing but just capturing a copy of that

information for packet replay or espionage; and ˜

Delay caused by compromising communication rou-

ters that deliberately induce latencies in propagation to

critically affect the grid’s SA.

Many authentication and authorization algorithms

are proposed to secure synchrophasor data over

communication channels [57]. These methods range

from conventional encryption methods to cyber trust.

Due to the ubiquity and widespread range of these

devices, key distribution and management becomes a

problem. Mutual authentication is also proposed to

account for trust [61]. Decentralized, blockchain-based

trust acquisition is being considered too. The publish-

subscribe hub-spoke architecture proposed by NAS-

PInet supports dynamic sharing of device data to

alleviate shortcomings of the communication medium

like delays and latencies. Standards like IEC

61850-90-5 recommend trusted key distribution center

to generate and distribute keys that meet system

requirements [63–66].

3) Application: Despite being protected by enterprise

security tools for intrusion detection and prevention,

virtualization, segmentation, authentication, authoriza-

tion and access control, cyberattacks still proliferate

[67, 68]. It is understood that any successful attack at

the other two levels perpetrated in a manner unde-

tectable by the enterprise security systems can pose a

significant threat. The attacks at this level are the most

dangerous, since crucial power system applications

use data from WAMS to conduct analysis to address

reliability, power quality, network topology, and

faults. An adverse impact on these calculations could

compromise the ‘‘self-healing’’ nature of the grid.

More recent solutions include game theory, machine

learning, proactive data visualization, and defense-in-

depth [12, 123].

3.2.1 Evaluation of security

Works have tested the resilience of PMUs and PDCs

against different attacks. The authors in [124] conducted

penetration testing of a synchrophasor network in IEEE

68-bus system to map vulnerabilities against the common

vulnerabilities exposure (CVE) database. Potential correc-

tive measures to ensure the security of PMUs and PDCs is

proposed [125]. Considering the security at substation and

information levels, the authors provide a wide range of

tools to mitigate breaches at both fronts. A multilayered

architecture at the substation is proposed where different

levels of data abstraction is provided between PMUs and

external environment, supplemented by firewalls, user

datagram protocol (UDP) secure for communication over

untrusted networks, and remote access using secure shell

(SSH).

4 Data quality-cybersecurity dependency

The severity of an attack can be understood from the

extent of its impacts on the targeted system. With the smart

grid encouraging interoperability between devices, infor-

mation, applications, and protocols, a transparent and direct
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information exchange is now feasible. This also means that

if information in one of the interconnected systems is

infected, it is bound to propagate to other systems upon

exchange, affecting the whole network. Synchrophasor

devices harbor such vulnerabilities, as summarized in

Section 3.2. However, to mitigate cyberattacks on inter-

connected systems, the relationship between devices and

data must be known.

Table 5 summarizes key interdependencies between the

two challenges. There is a tight coupling between data

quality and cyber-attacks, implying it is wise to study

synchrophasor cybersecurity by accounting for the impacts

on quality. In most attacks, plausibility, completeness,

accuracy and consistency are primarily impacted

[126, 127]. In Section 4.1, specific evaluation methods for

quantifying this relationship are reviewed. Section 4.2

looks at how data quality characteristics can be used as

markers to detect potential cyber-attacks within the context

of synchrophasors. Results from these subsections are

summarized in Tables 6 and 7, respectively.

4.1 Interdependency evaluation methods

Next to communications, cybersecurity was found to

impact the design and installation costs for synchrophasors

[141]. This is because they are critical to the missionsup-

port systems of the grid. Different practical ways for util-

ities to mitigate quality issues like accuracy, timeliness and

consistency are also identified. Some methods include

employing dedicated communication channels between

PMUs and PDCs, encrypting PMU data before communi-

cation, and enhancing communication endpoints using

firewalls and routers. The report, however, does not delve

into the details of how such methods could impact latency

(and hence, timeliness) and availability of the data.

Given different manufacturers of devices, there will be

differences in measurement and calibration quality despite

adhering to the standards. The varying application

requirements cause differences in application-level PMU

performance, of which data quality is a major one. The

static and dynamic PMU testing efforts of the Performance

and Standards Task Team (PSTT) of NASPI and the PMU

performance characterization are briefly summarized in

[142]. In it, the different steady-state tests performed on

magnitude, phase and frequency evaluate their confor-

mance to accuracy requirements, which is an important

attribute of data quality and is a direct target of many

cyberattacks. Given the impact of instrumentation channels

on the quality, they have been well-characterized and

evaluated for impacts on accuracy in the literature. The

errors induced by them could be rectified through model-

based correction algorithms and state estimation based

error filtering. Some other avenues where data quality

could be evaluated include the cable configurations, testing

and validating the devices to ensure accurate, consistent

performance and interoperability at all levels [143, 144].

Although not explicit, these works hint at the improvement

in the resilience of synchrophasor devices against poten-

tially malicious activities by accounting for proper testing

methods to characterize and evaluate the different sources

of errors prior to deployment that might contribute to poor

quality.

Final conclusions can be gathered from [145]. The

report by the Pacific Northwest National Laboratory

(PNNL) analyzes existing synchrophasor networks in terms

of their communication and information-level interoper-

ability, security and performance. It concluded that latency

is a key issue for the future synchrophasor designs which is

expected to compound latency due to PDC functionality. It

also emphasized that substations generally did not employ

Table 5 Summary of the interdependency between quality and cybersecurity challenges

Level Quality attribute Quality issue Cyber-attack observed Security attribute

impacted

Device Completeness, accuracy,

plausibility

Synchronization signal loss,

measurement signal loss,

missing data

GPS spoofing, replay, device

tamper, changing device

calibration, FDI

Integrity

Aggregator Origin, consistency,

plausibility

Corrupted data, anomalies,

outliers

FDI, tampering, buffer overflow,

MITM

Confidentiality,

integrity

Communication Availability, origin,

consistency

Anomalies, outliers, inconsistent,

out-of-order data

DoS, MITM, FDI,

snooping, replay, delay

Confidentiality,

integrity,

availability

Application Origin, availability,

consistency,

completeness, accuracy

DoS, delay, APT, FDI, theft/fraud,

insider attack

Corrupted data,

missingness, anomalies,

outliers

Confidentiality,

integrity,

availability
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redundancy; there is little consistency in adoption of

security methods for synchrophasor networks. Some tools

include link-level encryption, virtual private networks

(VPNs), ID/IPS, firewalls and access control lists (ACLs).

Further, existing data quality checking methods locate a

compromise in integrity by identifying faulted data values

(due to measurement errors, communication delays or

external events) but not due to result of device tampering,

MITM, spoofing or FDI. Since both faults and attacks have

the same impact on quality, it is important to differentiate

the two causes while checking for the attributes such as

accuracy, consistency and timeliness.

To summarize, the following measures can be used as

metrics to quantify data quality: TVE, errors in magnitude,

phase, frequency and ROCOF, harmonics and noise for

measurement accuracy; comparison between measured and

expected results, confidence interval and precision for

measurement specifiers; temporal, geospatial and

topological accuracy for attribute accuracy; device model

specifications, geospatial and topological coordinates,

coverage and content for origination; persistence in Header

and Data frames, standards compliance, reporting rate and

order for logical consistency; and gap rate, gap size and

largest known gap for completeness. Benchmarking and

standardization are two methods that can be used to eval-

uate data quality. Similarly, cybersecurity can be quantified

by conducting extensive penetration testing of the syn-

chrophasor networks integrated into benchmarked IEEE

bus systems for different types of attacks (DoS, MITM,

FDI, spoofing, probing, cache poisoning) and discovering

potential vulnerabilities that could be exploited. While

doing so, it would be important to also repeat the evalua-

tion of the quality attributes using the above metrics and

explore how they are impacted due to the specific attacks,

and whether they violate the industry standards require-

ments specified for different applications.

Table 6 Summary of evaluation methods for quality (DQ) and cybersecurity (CS) issues

Issue Challenge Evaluation methods

Noise (DQ) Consistency, accuracy Cable configuration, testing, validation

Specifying confidence interval, precision, TVE,

ROCOF for measurements

Evaluating instrumentation channels

Model-based correction

State estimation-based error filtering

Presistence in Data/Header frames

Standards compliance

Outlier (DQ) Consistency, origin, accuracy Standardization, benchmarking

Enhancing endpoints with switches, routers

Specifying device model, coverage and content

Missingness (DQ) Completeness, availability, accuracy Dedicated communication channels

Enhancing endpoints with switches, routers

Delay/loss (CS) All levels Regular penetration testing of all levels

Link-level encryption, selective encryption

Dedicated communication channels

Data redundancy for fault tolerance

Manipulation (CS) Device, Aggregator, Communication Regular penetration testing of all levels

Link-level encryption, selective encryption

Data abstraction, multi-layered architecture

Data redundancy for fault tolerance

Augmenting ID/IPS, firewalls, ACLs, VPNs

Theft (CS) Device, Aggregator, Communication Regular penetration testing of all levels

Data abstraction, multi-layered architecture

Data redundancy for fault tolerance

Augmenting firewalls, ACLs, VPNs
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Table 7 Summary showing how quality can help identify cybersecurity issues

Cyber-attack Quality affected Quality check looks for Mitigation methods using quality

Device tampering (delay/

loss, theft) [128, 129]

Completeness, plausibility,

accuracy, consistency,

origination

Large gap sizes, inaccurate readings, ping fail Statistical substitution: regression,

imputation, interpolation

Intelligent substitution: neural

networks, logistic regression,

optimization

Securing the physical devices

Spoofing PMU data

(manipulation)

[130–132]

Consistency, accuracy,

plausibility

Unexpected values, errors, mismatch with

SCADA values, redundant timestamp, out-of-

order packet arrival

Monitoring line impedances for

anomalies

Divergence and miscorrelation

between SCADA and PMU data

GPS spoofing

(manipulation, delay/

loss) [54, 133–135]

Consistency, origination,

plausibility

Inaccurate timing value, TVE[ 1%, packets

arrive out-of-order

Using multiple synchronization

sources or telecommunications

Anti-spoofing checking methods

at receivers

Internal holdover oscillators as

backups for providing accurate

timing signals

Spoofing match algorithm with

Golden Search for lighter

computation

Denial of service (delay/

loss) [129]

Completeness, accuracy,

consistency

Congestion at PDCs/network, delayed arrival of

packets, dropped packets, inability to reach

suspected device

Augmenting PDCs with inline

blocking tools

Employ port hardening and

disable IP broadcasts

Use high bandwidth

communications (expensive)

Man-in-the-middle

(delay/loss,

manipulation, theft)

[129]

Origination, accuracy,

availability, consistency

Mismatch between obtained and expected value,

abnormal delay in packet arrival

Mutual authentication, message

authentication codes

Digital certificates with active

management of CRLs

False data injection

(manipulation, theft)

[136–140]

Plausibility, consistency,

accuracy, origination

Mismatch with SCADA values, unexpected

values, spatio-temporal outliers

Spatio-temporal correlations,

density based local outlier

factoring

Monitor line impedance for

anomalies

Random time-hopping of packets

Divergence and miscorrelation

between SCADA and PMU data

Snooping, sniffing (theft)

[59, 129]

Plausibility, origin No observable changesadditional analysis

needed

Using secure gateway/VPN

communication

Employing TLS/SSL, SSH,

lightweight selective encryption

Delay (delay/loss)

[59, 129]

Completeness, consistency,

availability, accuracy

Observable patterns in gaps, slow arrival of

packets

Statistical and intelligent

substitutions

Redundant measurement devices

on the same line

APT, insider threat

(delay/loss, theft,

manipulation) [123]

Accuracy, consistency,

origin, plausibility

No observable changesadditional analysis

needed

Defense-in-depth

Machine learning, advanced data

analytics
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4.2 Addressing cyber-attacks using quality issues

It can be seen from Table 7 that successful cyberattacks

compromise synchrophasor data quality since the security

requirements are violated [146]. Given synchrophasors use

TCP/UDP on the transport layer for their communications,

attacks typically possible on TCP/IP stack like DoS,

MITM, packet replay or spoofing are possible in syn-

chrophasor domains as well.

Physical attacks like device tampering causes loss or

incurs theft of critical information, easily observed through

large gaps sizes, poor accuracy in obtained values and

unreliable origin. The lost data is typically handled through

substitution, either statistical or intelligent [128, 129]. The

best way to prevent physical attacks like cable disconnects,

direct damage to device, etc. is by ensuring the devices are

isolated from external weather and human elements.

Spoofing synchrophasor data is achievable through

polynomial fitting or data mirroring techniques. Such

attacks impact quality that manifests as outliers or noise.

Several methods have been proposed to counter these

attacks: intra-PMU and inter-PMU correlations to deter-

mine the relationship between PMU parameters and across

PMUs in a locality, respectively; machine learning tech-

niques like support vector machines (SVMs) and more

[130–132].

GPS spoofing exploits publicly available civilian GPS

signals using air or cable to produce signals that initially

align with the original, but slowly start increasing the

power to drown the authentic signal and thereby compro-

mising the receiver [54, 133]. By introducing measurement

errors in the time synchronization, the attacks induce

changes in data consistency and plausibility which can be

used as markers to identify the likelihood of the attack

[134, 135, 147].

In a successful DoS where multiple synchrophasor

devices get compromised, packet delay or loss is observed.

This impact in quality can serve a clue to the onset of DoS-

style attacks. Typical solutions involve augmenting inline

blocking tools, high bandwidth connections, disabling IP

broadcasts and port hardening.

MITM is possible in synchrophasors where the attacker

acts as a legitimate PDC to the PMUs and viceversa,

thereby intercepting and/or modifying all messages

exchanged. This is noticed by quality checking methods in

the form of poor accuracy and consistency in values

between what was sent by PMU and what was received by

PDC. It can be avoided by having the devices employ

mutual authentication and a digital certificate mechanism

with an actively managed certificate evocation lists (CRLs)

and certificate authorities [59, 129].

FDI impacts the consistency, accuracy and plausibility

of the data. The effects are typically observed as spatio-

temporal outliers in the data. Quality checking methods

check for this anomaly and may employ correlation across

different timestamps to identify the corruption of data. FDI

is one of the widely explored attacks on synchrophasor

domain, with solutions like determining the mismatch

between the values obtained from PMUs and that observed

in SCADA, monitoring the line impedances which get

affected when data is manipulated, and using density-based

local outlier filter (LOF) analysis [136–140].

Sometimes, attackers simply capture the packets flowing

in a channel with an intent to listen. Such sniffing/snooping

attacks have been conducted using WireShark to realize

messages are exchanged in plaintext. This attack is difficult

to detect using data quality checking methods since most

often, no quality characteristic is impacted as the attackers

do not affect the data actively. However, technologies like

VPN, encryption of selective messages (to reduce the

overall process overhead), or transport layer security

(TLS)/secure ocket layer (SSL), secure shell (SSH) can be

used to mitigate them. While TLS has been shown to be

susceptible to poisoning attacks and VPN to side channel

attacks, careful network design can account for them

[129, 148].

With the increased frequency of campaign efforts and

nation-sponsored attacks against the grid, synchrophasors

could be lucrative targets for sophisticated attacks like

advanced persistent threats (APTs), social engineering,

watering-hole attacks and malware-based intrusions

[149–153]. While these attacks scale beyond specific

devices in the synchrophasor hierarchy, the quality

checking methods alone would not be sufficient [123]. The

use of defense-in-depth model augmented with stakeholder

interactions, awareness and training, and intelligent solu-

tions like machine learning for attack data classification

and/or event prediction, root-cause analysis of observed

events, developing evolving defense topographies using

moving target defense, and advanced visualization tech-

niques for efficient cognition of events would play a critical

role.

The key takeaway from this section is that impacts on

data quality can provide strong markers for an underlying

cyber-attack. Noise, outliers and missing values are all

commonly observed issues which quality checking meth-

ods may be programmed to detect, analyze and base

decisions on. Certain sophisticated attacks like APTs,

insider threats, sniffing, and social engineering have indi-

rect impacts on quality which a checking method may not

be able to detect with enough confidence or precision.

Additional solutions are required to mitigate such attacks in

the synchrophasor domain. These solutions include statis-

tical methods like divergence, correlation, regression and

substitution; intelligent methods like neural networks and

evolutionary algorithms for event classification and
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prediction, logistic regression for substitution; technologies

like VPNs, firewalls, ID/IPS, anomaly detectors, selective

encryption, port hardening, network isolation and use of

TLS/SSL, SSH; and human-in-the-loop solutions like

advanced visualization techniques, awareness and training,

and stakeholder engagements. While the impacts on quality

can also be due to underlying device or measurement

errors, most of the works in the literature assume the data

has been subject to delay/loss, manipulation or theft

intentionally. This paves way for the recommendation that

the upcoming research in this area must look at ways to

differentiate the impacts on data quality due to attacks from

errors.

5 Future directions of research and conclusion

The future directions of research in the areas of syn-

chrophasor data quality, cybersecurity and communications

are multi-faceted. Addressing data quality challenges must

begin with a strong push to the adoption of industry-wide,

vendor-agnostic data management, processing and storage

standards for smart grid. Most recent cyber-attacks were

successful due to the difference in speed of cognition of the

information generated by automated vulnerability detection

tools and the speed with which the machine data is created

(called cognitive gap) [123]. The design of synchrophasor

devices are also expected to improve in the future [103].

Keeping in mind the quality challenges, an improvement to

PDC design called flexible integrated synchrophasor sys-

tem (FIPS) was proposed to minimize issues in quality and

communication, and tackles specific tasks of PDC such as

data alignment, employs cryptographic methods to ensure

confidential exchange of data without jeopardizing integ-

rity, and establishes relevance to the NASPInet [121]. To

ensure device and applicationlevel interoperability, devel-

opment of technical standards and conformance testing

rules is expected. Further, the emergence of distribution-

level l-PMUs will evoke the need for developing mea-

surement, communication, quality and security standards.

Further, with the deployment of distributed renewable

sources, electric and autonomous vehicles, energy storage

and transactive energy, there is a strong impetus for

enhancing technologies behind monitoring and control, of

which synchrophasors will play a major role [141].

To conclude, while existing research has focused on the

synchrophasor challenges of quality and cybersecurity

individually, their interdependency has largely been

ignored. This paper makes one of the first attempts at

highlighting the impacts of cyber-attacks on various quality

attributes, thereby recommending that the future research

on the design and development of security solutions should

account for their impacts on quality as well, and that

different quality characteristics can be used by quality

checking methods to flag for potential cyber-attacks.

Plausibility, completeness, accuracy and consistency are

some of the attributes that are most adversely impacted by

a majority of the attacks on synchrophasors. At the same

time, not all cases of poor data quality imply a successful

cyber-attack as the reason. Different metrics that could be

used to quantify quality attributes were summarized, and

the methods that help evaluate the impacts of quality and

security on performance were also briefly highlighted. This

paper serves as a starting point for researchers entering

these areas as it summarizes and determines their interde-

pendency and relevance to smart grid security.
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